Merge pull request 'ganimede-multipacket' (#19) from ganimede-multipacket into ganimede-rework

Reviewed-on: #19
This commit is contained in:
Adam 2025-05-27 15:18:08 +02:00
commit 209b483adb
7 changed files with 359 additions and 273 deletions

View File

@ -3,44 +3,37 @@ use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all; use IEEE.NUMERIC_STD.all;
entity dummy_ip is entity dummy_ip is
generic (
data_width : natural := 8
);
port ( port (
clk, rst : in std_logic; clk, rst : in std_logic;
ready_in, valid_in : in std_logic; ready_in, valid_in : in std_logic;
ready_out, valid_out : out std_logic; ready_out, valid_out : out std_logic;
data_in : in std_logic_vector(data_width - 1 downto 0); data_in : in std_logic_vector(8 - 1 downto 0);
data_out : out std_logic_vector(data_width - 1 downto 0) data_out : out std_logic_vector(8 - 1 downto 0)
); );
end entity dummy_ip; end entity dummy_ip;
architecture rtl of dummy_ip is architecture rtl of dummy_ip is
signal incremented_in : std_logic_vector(data_width - 1 downto 0); signal incremented_in : std_logic_vector(8 - 1 downto 0);
signal valid_out_signal : std_logic;
begin begin
valid_out <= valid_out_signal; comb_proc: process(ready_in, valid_in, data_in, incremented_in)
data_out <= incremented_in; begin
ready_out <= ready_in;
end process;
seq_proc: process(clk, data_in, ready_in, valid_in) seq_proc: process(clk,rst)
begin begin
if rst = '1' then if rst = '1' then
incremented_in <= (others => '0'); valid_out <= '0';
valid_out_signal <= '0'; data_out <= (others => '0');
ready_out <= '1'; elsif rising_edge(clk) then
else if valid_in = '1' and ready_in = '1' then
if rising_edge(clk) then valid_out <= '1';
if valid_in = '1' then data_out <= std_logic_vector(unsigned(data_in) + 1);
valid_out_signal <= '1'; else
ready_out <= '0'; valid_out <= '0';
elsif valid_out_signal = '1' and ready_in = '1' then end if;
valid_out_signal <= '0'; elsif falling_edge(clk) then
ready_out <= '1';
end if;
elsif falling_edge(clk)then
incremented_in <= std_logic_vector(unsigned(data_in) + 1);
end if;
end if; end if;
end process seq_proc; end process seq_proc;

View File

@ -35,21 +35,6 @@ architecture rtl of fifo_buffer is
signal inverted_in_clock : std_logic; signal inverted_in_clock : std_logic;
signal customout : std_logic_vector(0 downto 0); -- techmap needs customout and it is does not have a default value for some reason signal customout : std_logic_vector(0 downto 0); -- techmap needs customout and it is does not have a default value for some reason
begin begin
-- DECLARATION OF NX_SYNCRAM
--entity nx_syncram_be is
-- generic ( abits : integer := 6;
-- dbits : integer := 8
-- );
-- port (
-- clk : in std_ulogic;
-- address : in std_logic_vector (abits -1 downto 0);
-- datain : in std_logic_vector (dbits -1 downto 0);
-- dataout : out std_logic_vector (dbits -1 downto 0);
-- enable : in std_logic_vector (dbits/8-1 downto 0);
-- write : in std_logic_vector (dbits/8-1 downto 0)
-- );
--end;
techmap_ram_inst : entity techmap.syncram_2p techmap_ram_inst : entity techmap.syncram_2p
generic map(tech => tech, generic map(tech => tech,
@ -101,10 +86,12 @@ begin
read_pointer <= (others => '0'); read_pointer <= (others => '0');
write_pointer <= (others => '0'); write_pointer <= (others => '0');
else else
if rising_edge(in_clk) and valid_in = '1' and buffer_full = '0' then if rising_edge(in_clk) then
write_pointer <= std_logic_vector(unsigned(write_pointer) + 1); if valid_in = '1' and buffer_full = '0'then
write_pointer <= std_logic_vector(unsigned(write_pointer) + 1);
end if;
end if; end if;
if falling_edge(out_clk) then if rising_edge(out_clk) then
if ready_in = '1' and buffer_empty = '0' then if ready_in = '1' and buffer_empty = '0' then
read_pointer <= std_logic_vector(unsigned(read_pointer) + 1); read_pointer <= std_logic_vector(unsigned(read_pointer) + 1);
valid_out <= '1'; valid_out <= '1';

View File

@ -22,26 +22,24 @@ end entity fifo_deserializer;
architecture rtl of fifo_deserializer is architecture rtl of fifo_deserializer is
constant out_over_in : natural := output_width / input_width; constant out_over_in : natural := output_width / input_width - 1;
type state_t is record type state_t is record
count : integer; count : integer;
data : std_logic_vector(output_width - 1 downto 0); data : std_logic_vector(output_width - 1 downto 0);
full_word : std_logic;
prev_ready : std_logic;
end record state_t; end record state_t;
signal st : state_t; signal st : state_t;
begin begin
comb_proc: process(rst,clk,valid_in,ready_in,data_in,st) comb_proc: process(rst,clk,valid_in,ready_in,data_in,st)
begin begin
if st.count = out_over_in then if st.full_word = '1' and ready_in = '1' then
valid_out <= '1'; valid_out <= '1';
else else
valid_out <= '0'; valid_out <= '0';
end if; end if;
if not (st.count = out_over_in) and ready_in = '1' then ready_out <= ready_in;
ready_out <= '1';
else
ready_out <= '0';
end if;
data_out <= st.data; data_out <= st.data;
end process comb_proc; end process comb_proc;
@ -50,17 +48,26 @@ begin
if rst = '1' then if rst = '1' then
st.count <= 0; st.count <= 0;
st.data <= (others => '0'); st.data <= (others => '0');
st.full_word <= '0';
st.prev_ready <= '0';
elsif (rising_edge(clk)) then elsif (rising_edge(clk)) then
if st.count = out_over_in then st.prev_ready <= ready_in;
st.count <= 0; if valid_in = '1' and st.prev_ready = '1' then
elsif valid_in = '1' and ready_in = '1' then
st.count <= st.count + 1;
if endianess = 0 then if endianess = 0 then
st.data((out_over_in - st.count) * input_width - 1 downto (out_over_in - st.count - 1) * input_width) <= data_in; st.data((out_over_in + 1 - st.count) * input_width - 1 downto (out_over_in - st.count) * input_width) <= data_in;
else else
st.data((st.count + 1) * input_width - 1 downto st.count * input_width) <= data_in; st.data((st.count + 1) * input_width - 1 downto st.count * input_width) <= data_in;
end if; end if;
end if; end if;
if st.full_word = '1' and ready_in = '1' then
st.full_word <= '0';
end if;
if st.count = out_over_in and valid_in = '1' then
st.full_word <= '1';
st.count <= 0;
elsif valid_in = '1' then
st.count <= st.count + 1;
end if;
end if; end if;
end process seq_proc; end process seq_proc;

View File

@ -10,6 +10,9 @@ use gan_manager.management_types.all;
library gan_buffer; library gan_buffer;
entity ganimede_toplevel is entity ganimede_toplevel is
generic (
tech : integer
);
port ( port (
clk : in std_logic; clk : in std_logic;
rst : in std_logic; rst : in std_logic;
@ -33,6 +36,7 @@ architecture rtl of ganimede_toplevel is
signal socbridge_clk : std_logic; signal socbridge_clk : std_logic;
signal ganimede_to_ip_reset : std_logic; signal ganimede_to_ip_reset : std_logic;
constant buf_size :integer := 2*1024;
--signal gan_socbridge_WE_in : std_logic; --signal gan_socbridge_WE_in : std_logic;
--signal gan_socbridge_WE_out : std_logic; --signal gan_socbridge_WE_out : std_logic;
--signal gan_socbridge_is_full_in : std_logic; --signal gan_socbridge_is_full_in : std_logic;
@ -43,8 +47,15 @@ begin
ip_to_socbridge_driver.fifo <= buffer_to_socbridge_driver; ip_to_socbridge_driver.fifo <= buffer_to_socbridge_driver;
ip_to_socbridge_driver.flush <= ip_to_ganimede.socbridge.flush; ip_to_socbridge_driver.flush <= ip_to_ganimede.socbridge.flush;
ganimede_to_ip_reset <= rst or ip_to_ganimede.socbridge.flush; ganimede_to_ip_reset <= rst or ip_to_ganimede.socbridge.flush;
ganimede_to_ip.socbridge.used_slots <= 0;
ip_to_socbridge_driver.read_fifo.data <= (others => '0');
ip_to_socbridge_driver.read_fifo.valid <= '0';
ip_to_socbridge_driver.read_fifo.ready <= '0';
--- DRIVER INSTANTIATION --- --- DRIVER INSTANTIATION ---
socbridge_driver_inst: entity gan_socbridge.socbridge_driver socbridge_driver_inst: entity gan_socbridge.socbridge_driver
generic map(
BUFFER_SIZE => buf_size
)
port map( port map(
clk => clk, clk => clk,
socbridge_clk => socbridge_clk, socbridge_clk => socbridge_clk,
@ -81,8 +92,8 @@ begin
fifo_buffer_to_ip_inst : entity gan_buffer.fifo_buffer fifo_buffer_to_ip_inst : entity gan_buffer.fifo_buffer
generic map ( generic map (
buffer_size => 2*1024 buffer_size => buf_size,
--tech => 60 tech => tech
) )
port map( port map(
in_clk => socbridge_clk, in_clk => socbridge_clk,
@ -93,13 +104,14 @@ begin
valid_in => socbridge_driver_to_buffer.valid, valid_in => socbridge_driver_to_buffer.valid,
valid_out => ganimede_to_ip.socbridge.valid, valid_out => ganimede_to_ip.socbridge.valid,
data_in => socbridge_driver_to_buffer.data, data_in => socbridge_driver_to_buffer.data,
data_out => ganimede_to_ip.socbridge.data data_out => ganimede_to_ip.socbridge.data,
used_slots => ip_to_socbridge_driver.read_fifo.used_slots
); );
fifo_buffer_from_ip_inst : entity gan_buffer.fifo_buffer fifo_buffer_from_ip_inst : entity gan_buffer.fifo_buffer
generic map ( generic map (
buffer_size => 2*1024 buffer_size => buf_size,
-- tech => 60 tech => tech
) )
port map( port map(
in_clk => clk, in_clk => clk,

View File

@ -73,6 +73,7 @@ package io_types is
type ip_to_socbridge_driver_t is record type ip_to_socbridge_driver_t is record
fifo: fifo_interface_t; fifo: fifo_interface_t;
read_fifo: fifo_interface_t;
flush: std_logic; flush: std_logic;
end record ip_to_socbridge_driver_t; end record ip_to_socbridge_driver_t;

View File

@ -13,7 +13,8 @@ use grlib.stdlib.all;
entity socbridge_driver is entity socbridge_driver is
generic( generic(
MAX_PKT_SIZE : integer range 1 to 128 := 32 MAX_PKT_SIZE : integer range 1 to 128 := 8;
BUFFER_SIZE : integer
); );
port( port(
clk : in std_logic; clk : in std_logic;
@ -41,24 +42,16 @@ architecture rtl of socbridge_driver is
signal next_rx_state : rx_state_t; signal next_rx_state : rx_state_t;
signal next_tx_state : tx_state_t; signal next_tx_state : tx_state_t;
signal st : state_rec_t; signal st : state_rec_t;
signal valid_out : std_logic;
--- TRANSLATOR --- --- TRANSLATOR ---
signal trans_st : translator_state_t; signal trans_st : translator_state_t;
signal trans_read_next_state : ctrl_inst_state_t; signal trans_read_next_state : ctrl_inst_state_t;
signal trans_write_next_state : ctrl_inst_state_t; signal trans_write_next_state : ctrl_inst_state_t;
--- FSM COMMUNICATION --- --- FSM COMMUNICATION ---
signal tx_sent_response, rx_received_response : std_logic;
--- MANAGEMENT COMMUNICATION --- --- MANAGEMENT COMMUNICATION ---
begin begin
ext_to_socbridge_driver_rec.data <= ext_to_socbridge_driver.payload;
ext_to_socbridge_driver_rec.clk <= ext_to_socbridge_driver.control(1);
ext_to_socbridge_driver_rec.parity <= ext_to_socbridge_driver.control(0);
socbridge_clk <= ext_to_socbridge_driver_rec.clk;
comb_proc: process(ext_to_socbridge_driver, ip_to_socbridge_driver, comb_proc: process(ext_to_socbridge_driver_rec, ip_to_socbridge_driver,
st, controller_to_socbridge_driver, trans_st, controller_to_socbridge_driver, st, trans_st)
tx_sent_response, rx_received_response,
valid_out)
variable curr_response_bits : std_logic_vector(4 downto 0); variable curr_response_bits : std_logic_vector(4 downto 0);
variable local_next_rx_transaction : transaction_t; variable local_next_rx_transaction : transaction_t;
variable local_next_tx_transaction : transaction_t; variable local_next_tx_transaction : transaction_t;
@ -66,8 +59,13 @@ begin
begin begin
-- DEFAULT VALUES -- DEFAULT VALUES
-- Helpful Bindings -- -- Helpful Bindings --
next_rx_data_size <= 2 ** to_integer(unsigned(ext_to_socbridge_driver.payload(2 downto 0))); ext_to_socbridge_driver_rec.data <= ext_to_socbridge_driver.payload;
curr_response_bits := ext_to_socbridge_driver.payload(7 downto 3); ext_to_socbridge_driver_rec.clk <= ext_to_socbridge_driver.control(1);
ext_to_socbridge_driver_rec.parity <= ext_to_socbridge_driver.control(0);
socbridge_clk <= ext_to_socbridge_driver_rec.clk;
socbridge_driver_to_ip.used_slots <= 0;
next_rx_data_size <= 2 ** to_integer(unsigned(ext_to_socbridge_driver_rec.data(2 downto 0)));
curr_response_bits := ext_to_socbridge_driver_rec.data(7 downto 3);
-- Set helper var to current transaction seen at the input. -- Set helper var to current transaction seen at the input.
local_next_rx_transaction := NO_OP; local_next_rx_transaction := NO_OP;
if curr_response_bits = "10000" then if curr_response_bits = "10000" then
@ -89,12 +87,12 @@ begin
socbridge_driver_to_ext.payload <= st.socbridge_driver_to_ext_reg.data; socbridge_driver_to_ext.payload <= st.socbridge_driver_to_ext_reg.data;
socbridge_driver_to_ext.control(0) <= st.socbridge_driver_to_ext_reg.parity; socbridge_driver_to_ext.control(0) <= st.socbridge_driver_to_ext_reg.parity;
socbridge_driver_to_ext.control(1) <= st.socbridge_driver_to_ext_reg.clk; socbridge_driver_to_ext.control(1) <= st.socbridge_driver_to_ext_reg.clk;
if trans_st.read.curr_state = IDLE then if trans_st.read.state = IDLE then
socbridge_driver_to_controller.is_reading <= '0'; socbridge_driver_to_controller.is_reading <= '0';
else else
socbridge_driver_to_controller.is_reading <= '1'; socbridge_driver_to_controller.is_reading <= '1';
end if; end if;
if trans_st.write.curr_state = IDLE then if trans_st.write.state = IDLE then
socbridge_driver_to_controller.is_writing <= '0'; socbridge_driver_to_controller.is_writing <= '0';
else else
socbridge_driver_to_controller.is_writing <= '1'; socbridge_driver_to_controller.is_writing <= '1';
@ -102,23 +100,27 @@ begin
--- Next State Assignments --- --- Next State Assignments ---
--- ### TX NEXT STATE ASSIGNMENTS ### --- --- ### TX NEXT STATE ASSIGNMENTS ### ---
case st.curr_tx_state is case st.tx_state is
when IDLE => when IDLE =>
if local_next_tx_transaction /= NO_OP then if (local_next_tx_transaction = WRITE or local_next_tx_transaction = WRITE_ADD) and not st.write_in_flight then
next_tx_state <= TX_HEADER;
elsif (local_next_tx_transaction = READ or local_next_tx_transaction = READ_ADD) and not st.read_in_flight then
next_tx_state <= TX_HEADER;
elsif local_next_tx_transaction = READ_RESPONSE or local_next_tx_transaction = WRITE_ACK then
next_tx_state <= TX_HEADER; next_tx_state <= TX_HEADER;
else else
next_tx_state <= IDLE; next_tx_state <= IDLE;
end if; end if;
when TX_HEADER => when TX_HEADER =>
-- Commands -- Commands
if st.curr_tx_transaction = WRITE_ADD or st.curr_tx_transaction = READ_ADD then if st.tx_transaction = WRITE_ADD or st.tx_transaction = READ_ADD then
next_tx_state <= ADDR1; next_tx_state <= ADDR1;
elsif st.curr_tx_transaction = WRITE then elsif st.tx_transaction = WRITE then
next_tx_state <= TX_W_BODY; next_tx_state <= TX_W_BODY;
elsif st.curr_tx_transaction = READ then elsif st.tx_transaction = READ then
next_tx_state <= TX_AWAIT; next_tx_state <= IDLE;
-- Responses -- Responses
elsif st.curr_tx_transaction = READ_RESPONSE then elsif st.tx_transaction = READ_RESPONSE then
next_tx_state <= TX_R_BODY; next_tx_state <= TX_R_BODY;
else else
next_tx_state <= IDLE; next_tx_state <= IDLE;
@ -136,33 +138,22 @@ begin
when ADDR3 => when ADDR3 =>
next_tx_state <= ADDR4; next_tx_state <= ADDR4;
when ADDR4 => when ADDR4 =>
if st.curr_tx_transaction = READ_ADD then if st.tx_transaction = READ_ADD then
next_tx_state <= TX_AWAIT; next_tx_state <= IDLE;
elsif st.curr_tx_transaction = WRITE_ADD then elsif st.tx_transaction = WRITE_ADD then
next_tx_state <= TX_W_BODY; next_tx_state <= TX_W_BODY;
else else
next_tx_state <= IDLE; next_tx_state <= IDLE;
end if; end if;
when TX_W_BODY => when TX_W_BODY =>
if st.tx_stage <= 1 then if st.tx_stage <= 1 then
next_tx_state <= TX_AWAIT; next_tx_state <= IDLE;
else else
next_tx_state <= TX_W_BODY; next_tx_state <= TX_W_BODY;
end if; end if;
when TX_AWAIT =>
-- Wait for RX FSM to get a response
if (st.curr_tx_transaction = WRITE_ADD or st.curr_tx_transaction = WRITE)
and st.curr_rx_transaction = WRITE_ACK then
next_tx_state <= IDLE;
elsif (st.curr_tx_transaction = READ_ADD or st.curr_tx_transaction = READ)
and st.curr_rx_transaction = READ_RESPONSE and (st.rx_stage = 1 or next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD) then
next_tx_state <= IDLE;
else
next_tx_state <= TX_AWAIT;
end if;
end case; end case;
--- Next State Assignment Of RX FSM --- --- Next State Assignment Of RX FSM ---
case st.curr_rx_state is case st.rx_state is
when IDLE => when IDLE =>
if local_next_rx_transaction /= NO_OP then if local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER; next_rx_state <= RX_HEADER;
@ -171,21 +162,27 @@ begin
end if; end if;
when RX_HEADER => when RX_HEADER =>
-- Commands -- Commands
if st.curr_rx_transaction = WRITE_ADD or st.curr_rx_transaction = READ_ADD then if st.rx_transaction = WRITE_ADD or st.rx_transaction = READ_ADD then
next_rx_state <= ADDR1; next_rx_state <= ADDR1;
elsif st.curr_rx_transaction = WRITE then elsif st.rx_transaction = WRITE then
next_rx_state <= RX_W_BODY; next_rx_state <= RX_W_BODY;
elsif st.curr_rx_transaction = READ then elsif st.rx_transaction = READ then
next_rx_state <= RX_AWAIT; next_rx_state <= RX_AWAIT;
-- Responses -- Responses
elsif st.curr_rx_transaction = READ_RESPONSE then elsif st.rx_transaction = READ_RESPONSE then
next_rx_state <= RX_R_BODY; next_rx_state <= RX_R_BODY;
else elsif local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
next_rx_state <= IDLE; next_rx_state <= IDLE;
end if; end if;
when RX_R_BODY => when RX_R_BODY =>
if st.rx_stage <= 1 then if st.rx_stage <= 1 then
next_rx_state <= IDLE; if local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
next_rx_state <= IDLE;
end if;
else else
next_rx_state <= RX_R_BODY; next_rx_state <= RX_R_BODY;
end if; end if;
@ -196,9 +193,9 @@ begin
when ADDR3 => when ADDR3 =>
next_rx_state <= ADDR4; next_rx_state <= ADDR4;
when ADDR4 => when ADDR4 =>
if st.curr_rx_transaction = READ_ADD then if st.rx_transaction = READ_ADD then
next_rx_state <= RX_AWAIT; next_rx_state <= RX_AWAIT;
elsif st.curr_rx_transaction = WRITE_ADD then elsif st.rx_transaction = WRITE_ADD then
next_rx_state <= RX_W_BODY; next_rx_state <= RX_W_BODY;
else else
next_rx_state <= IDLE; -- Potentially superfluous safety next_rx_state <= IDLE; -- Potentially superfluous safety
@ -211,11 +208,11 @@ begin
end if; end if;
when RX_AWAIT => when RX_AWAIT =>
-- Wait for TX FSM to send a response -- Wait for TX FSM to send a response
if (st.curr_rx_transaction = WRITE_ADD or st.curr_rx_transaction = WRITE) if (st.rx_transaction = WRITE_ADD or st.rx_transaction = WRITE)
and st.curr_tx_transaction = WRITE_ACK then and st.tx_transaction = WRITE_ACK then
next_rx_state <= IDLE; next_rx_state <= IDLE;
elsif (st.curr_rx_transaction = READ_ADD or st.curr_rx_transaction = READ) elsif (st.rx_transaction = READ_ADD or st.rx_transaction = READ)
and st.curr_tx_transaction = READ_RESPONSE and st.tx_stage = 1 then and st.tx_transaction = READ_RESPONSE and st.tx_stage = 1 then
next_rx_state <= IDLE; next_rx_state <= IDLE;
else else
next_rx_state <= RX_AWAIT; next_rx_state <= RX_AWAIT;
@ -227,17 +224,22 @@ begin
local_next_data_out := (others => '0'); local_next_data_out := (others => '0');
socbridge_driver_to_ip.ready <= '0'; socbridge_driver_to_ip.ready <= '0';
--- ### TX_STATE BASED OUTPUT ### --- --- ### TX_STATE BASED OUTPUT ### ---
case st.curr_tx_state is case st.tx_state is
when IDLE => when IDLE =>
when TX_HEADER => when TX_HEADER =>
if st.curr_tx_transaction = WRITE_ACK or st.curr_tx_transaction = READ_RESPONSE then if st.tx_transaction = WRITE_ACK or st.tx_transaction = READ_RESPONSE then
local_next_data_out := get_header_bits(st.curr_tx_transaction, st.curr_rx_transaction) & get_size_bits(st.rx_data_size); local_next_data_out := get_header_bits(st.tx_transaction, st.rx_transaction) & get_size_bits(st.rx_data_size);
else else
local_next_data_out := get_header_bits(st.curr_tx_transaction, st.curr_rx_transaction) & get_size_bits(st.tx_data_size); local_next_data_out := get_header_bits(st.tx_transaction, st.rx_transaction) & get_size_bits(st.tx_data_size);
end if;
if st.tx_transaction = WRITE then
socbridge_driver_to_ip.ready <= '1';
end if; end if;
when TX_W_BODY => when TX_W_BODY =>
if st.tx_stage > 0 then if st.tx_stage > 1 then
socbridge_driver_to_ip.ready <= '1'; socbridge_driver_to_ip.ready <= '1';
end if;
if st.tx_stage > 0 then
if ip_to_socbridge_driver.fifo.valid = '1' then if ip_to_socbridge_driver.fifo.valid = '1' then
local_next_data_out := ip_to_socbridge_driver.fifo.data; local_next_data_out := ip_to_socbridge_driver.fifo.data;
else else
@ -246,54 +248,48 @@ begin
end if; end if;
when TX_R_BODY => when TX_R_BODY =>
if st.tx_stage > 0 then if st.tx_stage > 0 then
local_next_data_out := st.curr_read_data((((st.tx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.tx_stage - 1) mod 4) + 1) - 1) * 8); local_next_data_out := st.manager_data((((st.tx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.tx_stage - 1) mod 4) + 1) - 1) * 8);
end if; end if;
when TX_AWAIT =>
when ADDR1 => when ADDR1 =>
local_next_data_out := st.curr_tx_addr(31 downto 24); local_next_data_out := st.tx_addr(31 downto 24);
when ADDR2 => when ADDR2 =>
local_next_data_out := st.curr_tx_addr(23 downto 16); local_next_data_out := st.tx_addr(23 downto 16);
when ADDR3 => when ADDR3 =>
local_next_data_out := st.curr_tx_addr(15 downto 8); local_next_data_out := st.tx_addr(15 downto 8);
when ADDR4 => when ADDR4 =>
local_next_data_out := st.curr_tx_addr(7 downto 0); local_next_data_out := st.tx_addr(7 downto 0);
if st.tx_transaction = WRITE_ADD then
socbridge_driver_to_ip.ready <= '1';
end if;
end case; end case;
--- ### RX_STATE BASED OUTPUT ### --- --- ### RX_STATE BASED OUTPUT ### ---
socbridge_driver_to_manager.valid <= '0'; socbridge_driver_to_manager.valid <= '0';
socbridge_driver_to_manager.address <= (others => '0'); socbridge_driver_to_manager.data <= st.manager_data;
socbridge_driver_to_manager.data <= (others => '0'); socbridge_driver_to_manager.address <= st.manager_addr;
case st.curr_rx_state is socbridge_driver_to_ip.valid <= '0';
when IDLE => socbridge_driver_to_ip.data <= st.ext_to_socbridge_driver_reg.data;
when RX_HEADER => case st.rx_state is
when RX_W_BODY => when RX_W_BODY =>
if st.rx_stage mod 4 = 0 and st.rx_stage /= st.rx_data_size then if st.rx_stage mod 4 = 0 and st.rx_stage /= st.rx_data_size then
socbridge_driver_to_manager.data <= st.curr_write_data;
socbridge_driver_to_manager.address <= st.curr_rx_write_addr;
socbridge_driver_to_manager.valid <= '1'; socbridge_driver_to_manager.valid <= '1';
end if; end if;
when RX_R_BODY => when RX_R_BODY =>
socbridge_driver_to_ip.valid <= '1';
when RX_AWAIT => when RX_AWAIT =>
if st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then if st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD then
socbridge_driver_to_manager.data <= st.curr_write_data;
socbridge_driver_to_manager.address <= st.curr_rx_write_addr;
socbridge_driver_to_manager.valid <= '1'; socbridge_driver_to_manager.valid <= '1';
else
socbridge_driver_to_manager.address <= st.curr_rx_read_addr;
end if; end if;
when ADDR1 => when others =>
when ADDR2 =>
when ADDR3 =>
when ADDR4 =>
end case; end case;
next_parity_out <= calc_parity(local_next_data_out); next_parity_out <= calc_parity(local_next_data_out);
--- TRANSLATOR --- --- TRANSLATOR ---
--- Next state assignment --- Next state assignment
case trans_st.write.curr_state is case trans_st.write.state is
when IDLE => when IDLE =>
if st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD if st.rx_transaction = READ or st.rx_transaction = READ_ADD
or st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then or st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD then
trans_write_next_state <= IDLE; trans_write_next_state <= IDLE;
elsif trans_st.write.curr_inst.request = '1' and (ip_to_socbridge_driver.fifo.used_slots >= MAX_PKT_SIZE elsif trans_st.write.inst.request = '1' and (ip_to_socbridge_driver.fifo.used_slots >= MAX_PKT_SIZE
or ip_to_socbridge_driver.flush = '1') then or ip_to_socbridge_driver.flush = '1') then
trans_write_next_state <= SEND; trans_write_next_state <= SEND;
else else
@ -301,7 +297,7 @@ begin
end if; end if;
-- Wait for driver to go idle and send next instruction. Then enter AWAIT -- Wait for driver to go idle and send next instruction. Then enter AWAIT
when SEND => when SEND =>
if st.curr_tx_transaction = WRITE or st.curr_tx_transaction = WRITE_ADD then if st.tx_transaction = WRITE or st.tx_transaction = WRITE_ADD then
trans_write_next_state <= SEND_ACCEPTED; trans_write_next_state <= SEND_ACCEPTED;
else else
trans_write_next_state <= SEND; trans_write_next_state <= SEND;
@ -311,34 +307,34 @@ begin
trans_write_next_state <= AWAIT; trans_write_next_state <= AWAIT;
-- Wait for driver to finish current instruction, then reenter SEND -- Wait for driver to finish current instruction, then reenter SEND
when AWAIT => when AWAIT =>
if trans_st.write.curr_inst.seq_mem_access_count <= MAX_PKT_SIZE and st.curr_tx_state = IDLE then if trans_st.write.inst.access_count <= MAX_PKT_SIZE and not st.write_in_flight then
trans_write_next_state <= IDLE; trans_write_next_state <= IDLE;
elsif ip_to_socbridge_driver.fifo.used_slots = 0 and ip_to_socbridge_driver.flush = '1' elsif ip_to_socbridge_driver.fifo.used_slots = 0 and ip_to_socbridge_driver.flush = '1'
and st.curr_tx_state = IDLE then and not st.write_in_flight then
trans_write_next_state <= IDLE; trans_write_next_state <= IDLE;
elsif st.curr_tx_state = IDLE and (ip_to_socbridge_driver.fifo.used_slots >= MAX_PKT_SIZE elsif not st.write_in_flight and (ip_to_socbridge_driver.fifo.used_slots >= MAX_PKT_SIZE
or ip_to_socbridge_driver.flush = '1') then or ip_to_socbridge_driver.flush = '1') then
trans_write_next_state <= SEND; trans_write_next_state <= SEND;
else else
trans_write_next_state <= AWAIT; trans_write_next_state <= AWAIT;
end if; end if;
end case; end case;
case trans_st.read.curr_state is case trans_st.read.state is
when IDLE => when IDLE =>
if next_rx_transaction = READ or next_rx_transaction = READ_ADD if next_rx_transaction = READ or next_rx_transaction = READ_ADD
or next_rx_transaction = WRITE or next_rx_transaction = WRITE_ADD then or next_rx_transaction = WRITE or next_rx_transaction = WRITE_ADD then
trans_read_next_state <= IDLE; trans_read_next_state <= IDLE;
elsif st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD elsif st.rx_transaction = READ or st.rx_transaction = READ_ADD
or st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then or st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD then
trans_read_next_state <= IDLE; trans_read_next_state <= IDLE;
elsif trans_st.read.curr_inst.request = '1' then elsif trans_st.read.inst.request = '1' and BUFFER_SIZE - ip_to_socbridge_driver.read_fifo.used_slots > 2*MAX_PKT_SIZE then
trans_read_next_state <= SEND; trans_read_next_state <= SEND;
else else
trans_read_next_state <= IDLE; trans_read_next_state <= IDLE;
end if; end if;
-- Wait for driver to go idle and send next instruction. Then enter AWAIT -- Wait for driver to go idle and send next instruction. Then enter AWAIT
when SEND => when SEND =>
if st.curr_tx_transaction = READ or st.curr_tx_transaction = READ_ADD then if st.tx_transaction = READ or st.tx_transaction = READ_ADD then
trans_read_next_state <= SEND_ACCEPTED; trans_read_next_state <= SEND_ACCEPTED;
else else
trans_read_next_state <= SEND; trans_read_next_state <= SEND;
@ -348,11 +344,11 @@ begin
trans_read_next_state <= AWAIT; trans_read_next_state <= AWAIT;
-- Wait for driver to finish current instruction, then reenter SEND -- Wait for driver to finish current instruction, then reenter SEND
when AWAIT => when AWAIT =>
if trans_st.read.curr_inst.seq_mem_access_count <= MAX_PKT_SIZE and st.curr_tx_state = IDLE then if trans_st.read.inst.access_count <= MAX_PKT_SIZE and not st.read_in_flight then
trans_read_next_state <= IDLE; trans_read_next_state <= IDLE;
elsif ip_to_socbridge_driver.flush = '1'and st.curr_tx_state = IDLE then elsif ip_to_socbridge_driver.flush = '1'and not st.read_in_flight then
trans_read_next_state <= IDLE; trans_read_next_state <= IDLE;
elsif st.curr_tx_state = IDLE then elsif not st.read_in_flight and BUFFER_SIZE - ip_to_socbridge_driver.read_fifo.used_slots > 2*MAX_PKT_SIZE then
trans_read_next_state <= SEND; trans_read_next_state <= SEND;
else else
trans_read_next_state <= AWAIT; trans_read_next_state <= AWAIT;
@ -362,36 +358,37 @@ begin
--- NEXT TX TRANSACTION --- --- NEXT TX TRANSACTION ---
local_next_tx_transaction := NO_OP; local_next_tx_transaction := NO_OP;
next_tx_data_size <= 0; next_tx_data_size <= 0;
if trans_st.read.curr_state = IDLE and trans_st.write.curr_state = IDLE and st.curr_rx_state = RX_AWAIT then if trans_st.read.state = IDLE and trans_st.write.state = IDLE and st.rx_state = RX_AWAIT then
if (st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD) and manager_to_socbridge_driver.ready = '1' then if (st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD) and manager_to_socbridge_driver.ready = '1' then
local_next_tx_transaction := WRITE_ACK; local_next_tx_transaction := WRITE_ACK;
elsif (st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD) and manager_to_socbridge_driver.valid = '1' then elsif (st.rx_transaction = READ or st.rx_transaction = READ_ADD) and manager_to_socbridge_driver.valid = '1' then
next_tx_data_size <= st.rx_data_size; next_tx_data_size <= st.rx_data_size;
local_next_tx_transaction := READ_RESPONSE; local_next_tx_transaction := READ_RESPONSE;
end if; end if;
elsif trans_st.read.curr_state = SEND then elsif trans_st.read.state = SEND
and not ((st.last_sent_transaction = READ or st.last_sent_transaction = READ_ADD) and trans_st.write.state = SEND) then
if trans_st.read.is_first_word = '1' then if trans_st.read.is_first_word = '1' then
local_next_tx_transaction := READ_ADD; local_next_tx_transaction := READ_ADD;
else else
local_next_tx_transaction := READ; local_next_tx_transaction := READ;
end if; end if;
if trans_st.read.curr_inst.seq_mem_access_count > MAX_PKT_SIZE then if trans_st.read.inst.access_count > MAX_PKT_SIZE then
next_tx_data_size <= MAX_PKT_SIZE; next_tx_data_size <= MAX_PKT_SIZE;
elsif trans_st.read.curr_inst.seq_mem_access_count > 0 then elsif trans_st.read.inst.access_count > 0 then
next_tx_data_size <= trans_st.read.curr_inst.seq_mem_access_count; next_tx_data_size <= trans_st.read.inst.access_count;
else else
next_tx_data_size <= 0; next_tx_data_size <= 0;
end if; end if;
elsif trans_st.write.curr_state = SEND then elsif trans_st.write.state = SEND and not st.read_in_flight then
if trans_st.write.is_first_word = '1' then if trans_st.write.is_first_word = '1' then
local_next_tx_transaction := WRITE_ADD; local_next_tx_transaction := WRITE_ADD;
else else
local_next_tx_transaction := WRITE; local_next_tx_transaction := WRITE;
end if; end if;
if trans_st.write.curr_inst.seq_mem_access_count > MAX_PKT_SIZE then if trans_st.write.inst.access_count > MAX_PKT_SIZE then
next_tx_data_size <= MAX_PKT_SIZE; next_tx_data_size <= MAX_PKT_SIZE;
elsif trans_st.write.curr_inst.seq_mem_access_count > 0 then elsif trans_st.write.inst.access_count > 0 then
next_tx_data_size <= trans_st.write.curr_inst.seq_mem_access_count; next_tx_data_size <= trans_st.write.inst.access_count;
else else
next_tx_data_size <= 0; next_tx_data_size <= 0;
end if; end if;
@ -400,53 +397,59 @@ begin
next_tx_transaction <= local_next_tx_transaction; next_tx_transaction <= local_next_tx_transaction;
next_rx_transaction <= local_next_rx_transaction; next_rx_transaction <= local_next_rx_transaction;
next_data_out <= local_next_data_out; next_data_out <= local_next_data_out;
socbridge_driver_to_ip.valid <= valid_out;
end process comb_proc; end process comb_proc;
-- Process updating internal registers based on primary clock -- Process updating internal registers based on primary clock
seq_proc: process(ext_to_socbridge_driver_rec.clk, st.ext_to_socbridge_driver_reg.data, rst, clk) seq_proc: process(ext_to_socbridge_driver_rec.clk, rst, clk)
begin begin
if(rst = '1') then if(rst = '1') then
st.ext_to_socbridge_driver_reg.data <= (others => '0'); st <= st_reset_vec;
st.socbridge_driver_to_ext_reg.data <= (others => '0');
st.socbridge_driver_to_ext_reg.clk <= '0';
st.socbridge_driver_to_ext_reg.parity <= '1';
st.curr_tx_state <= IDLE;
st.curr_rx_state <= IDLE;
st.tx_stage <= 0;
st.rx_stage <= 0;
st.curr_tx_transaction <= NO_OP;
st.curr_rx_transaction <= NO_OP;
st.tx_data_size <= 0;
st.rx_data_size <= 0;
st.curr_rx_read_addr <= (others => '0');
st.curr_rx_write_addr <= (others => '0');
st.curr_write_data <= (others => '0');
st.curr_read_data <= (others => '0');
socbridge_driver_to_ip.data <= (others => '0');
valid_out <= '0';
elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then
st.ext_to_socbridge_driver_reg.data <= ext_to_socbridge_driver_rec.data; st.ext_to_socbridge_driver_reg.data <= ext_to_socbridge_driver_rec.data;
st.ext_to_socbridge_driver_reg.clk <= ext_to_socbridge_driver_rec.clk; -- PARITY CHECK NOT IMPLEMENTED, REMOVING
st.ext_to_socbridge_driver_reg.parity <= ext_to_socbridge_driver_rec.parity; --st.ext_to_socbridge_driver_reg.parity <= ext_to_socbridge_driver_rec.parity;
st.socbridge_driver_to_ext_reg.data <= next_data_out; st.socbridge_driver_to_ext_reg.data <= next_data_out;
st.socbridge_driver_to_ext_reg.clk <= not st.socbridge_driver_to_ext_reg.clk; st.socbridge_driver_to_ext_reg.clk <= not st.socbridge_driver_to_ext_reg.clk;
st.socbridge_driver_to_ext_reg.parity <= next_parity_out; st.socbridge_driver_to_ext_reg.parity <= next_parity_out;
st.curr_tx_state <= next_tx_state; st.tx_state <= next_tx_state;
st.curr_rx_state <= next_rx_state; st.rx_state <= next_rx_state;
valid_out <= '0'; case st.tx_state is
case st.curr_tx_state is
when IDLE => when IDLE =>
st.curr_tx_transaction <= next_tx_transaction; if ip_to_socbridge_driver.flush = '1' then
st.tx_data_size <= next_tx_data_size; st.last_sent_transaction <= NO_OP;
end if;
if (next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD
or next_tx_transaction = READ or next_tx_transaction = READ_ADD) then
if not st.read_in_flight or not st.write_in_flight then
st.tx_transaction <= next_tx_transaction;
st.tx_data_size <= next_tx_data_size;
else
st.tx_transaction <= NO_OP;
st.tx_data_size <= 0;
end if;
else
st.tx_transaction <= next_tx_transaction;
st.tx_data_size <= next_tx_data_size;
end if;
if next_tx_transaction = WRITE_ADD or next_tx_transaction = WRITE if next_tx_transaction = WRITE_ADD or next_tx_transaction = WRITE
or next_tx_transaction = READ_RESPONSE then or next_tx_transaction = READ_RESPONSE then
st.curr_tx_addr <= trans_st.write.curr_inst.address; st.tx_addr <= trans_st.write.inst.address;
st.tx_stage <= next_tx_data_size; st.tx_stage <= next_tx_data_size;
else else
st.curr_tx_addr <= trans_st.read.curr_inst.address; st.tx_addr <= trans_st.read.inst.address;
st.tx_stage <= 0; st.tx_stage <= 0;
end if; end if;
when TX_HEADER =>
if st.tx_transaction = WRITE or st.tx_transaction = WRITE_ADD then
st.last_sent_transaction <= st.tx_transaction;
if not (st.rx_state = RX_HEADER and st.rx_transaction = WRITE_ACK) then
st.write_in_flight <= true;
end if;
elsif st.tx_transaction = READ or st.tx_transaction = READ_ADD then
st.last_sent_transaction <= st.tx_transaction;
if not (st.rx_state = RX_HEADER and st.rx_transaction = READ_RESPONSE) then
st.read_in_flight <= true;
end if;
end if;
when TX_W_BODY => when TX_W_BODY =>
if st.tx_stage > 0 then if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1; st.tx_stage <= st.tx_stage - 1;
@ -457,9 +460,9 @@ begin
end if; end if;
when others => when others =>
end case; end case;
case st.curr_rx_state is case st.rx_state is
when IDLE => when IDLE =>
st.curr_rx_transaction <= next_rx_transaction; st.rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size; st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then or next_rx_transaction = READ_RESPONSE then
@ -468,53 +471,79 @@ begin
st.rx_stage <= 0; st.rx_stage <= 0;
end if; end if;
when RX_HEADER => when RX_HEADER =>
if st.rx_transaction = WRITE_ACK then
if not (st.tx_state = TX_HEADER and (st.tx_transaction = WRITE or st.tx_transaction = WRITE_ADD)) then
st.write_in_flight <= false;
end if;
if next_rx_transaction /= NO_OP then
st.rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
end if;
elsif st.rx_transaction = READ_RESPONSE then
if not (st.tx_state = TX_HEADER and (st.tx_transaction = READ or st.tx_transaction = READ_ADD)) then
st.read_in_flight <= false;
end if;
end if;
when RX_R_BODY => when RX_R_BODY =>
valid_out <= '1';
socbridge_driver_to_ip.data <= st.ext_to_socbridge_driver_reg.data;
if st.rx_stage > 0 then if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1; st.rx_stage <= st.rx_stage - 1;
end if; end if;
if next_rx_transaction /= NO_OP and st.rx_stage <= 1 then
st.rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
end if;
when RX_W_BODY => when RX_W_BODY =>
if st.rx_stage > 0 then if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1; st.rx_stage <= st.rx_stage - 1;
st.curr_write_data((((st.rx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.rx_stage - 1) mod 4) + 1) - 1) * 8) <= st.ext_to_socbridge_driver_reg.data; st.manager_data((((st.rx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.rx_stage - 1) mod 4) + 1) - 1) * 8) <= st.ext_to_socbridge_driver_reg.data;
end if; end if;
if (st.rx_stage - 2) mod 4 = 0 and st.rx_data_size - st.rx_stage > 4 then if (st.rx_stage - 2) mod 4 = 0 and st.rx_data_size - st.rx_stage > 4 then
st.curr_rx_write_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.curr_rx_write_addr) + 4), 32)); st.manager_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.manager_addr) + 4), 32));
end if; end if;
when RX_AWAIT => when RX_AWAIT =>
st.curr_read_data <= manager_to_socbridge_driver.data; st.manager_data <= manager_to_socbridge_driver.data;
-- THIS DOESN'T WORK FOR LARGER THAN 4 BYTE ACCESSES, SHOULD BE FIXED BUT NOT NEEDED IF ONLY 4 BYTE ACCESSES ARRIVE if st.tx_transaction = READ_RESPONSE or st.tx_transaction = WRITE_ACK then
if st.curr_tx_transaction = READ_RESPONSE or st.curr_tx_transaction = WRITE_ACK then if (st.rx_transaction = READ or st.rx_transaction = READ_ADD) and (st.tx_stage - 2) mod 4 = 0 then
if (st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD) and (st.tx_stage - 2) mod 4 = 0 then st.manager_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.manager_addr) + 4), 32));
st.curr_rx_read_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.curr_rx_read_addr) + 4), 32)); elsif (st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD) and (st.rx_stage - 2) mod 4 = 0 then
elsif (st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD) and (st.rx_stage - 2) mod 4 = 0 then st.manager_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.manager_addr) + 4), 32));
st.curr_rx_write_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.curr_rx_write_addr) + 4), 32));
end if; end if;
end if; end if;
when ADDR1 => when ADDR1 =>
if st.curr_rx_transaction = READ_ADD then if st.rx_transaction = READ_ADD then
st.curr_rx_read_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
else else
st.curr_rx_write_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
end if; end if;
when ADDR2 => when ADDR2 =>
if st.curr_rx_transaction = READ_ADD then if st.rx_transaction = READ_ADD then
st.curr_rx_read_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
else else
st.curr_rx_write_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
end if; end if;
when ADDR3 => when ADDR3 =>
if st.curr_rx_transaction = READ_ADD then if st.rx_transaction = READ_ADD then
st.curr_rx_read_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
else else
st.curr_rx_write_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
end if; end if;
when ADDR4 => when ADDR4 =>
if st.curr_rx_transaction = READ_ADD then if st.rx_transaction = READ_ADD then
st.curr_rx_read_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
else else
st.curr_rx_write_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data; st.manager_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
end if; end if;
when others => when others =>
end case; end case;
@ -523,72 +552,77 @@ begin
--- TRANSLATOR --- --- TRANSLATOR ---
if(rst = '1') then if(rst = '1') then
trans_st.read.curr_state <= IDLE; trans_st <= translator_reset_vec;
trans_st.read.curr_inst.request <= '0';
trans_st.read.curr_inst.address <= (others => '0');
trans_st.read.curr_inst.seq_mem_access_count <= 0;
trans_st.read.curr_inst.instruction <= NO_OP;
trans_st.read.is_first_word <= '1';
trans_st.write.curr_state <= IDLE;
trans_st.write.curr_inst.request <= '0';
trans_st.write.curr_inst.address <= (others => '0');
trans_st.write.curr_inst.seq_mem_access_count <= 0;
trans_st.write.curr_inst.instruction <= NO_OP;
trans_st.write.is_first_word <= '1';
elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then
trans_st.read.curr_state <= trans_read_next_state; trans_st.read.state <= trans_read_next_state;
trans_st.write.curr_state <= trans_write_next_state; trans_st.write.state <= trans_write_next_state;
case trans_st.write.curr_state is case trans_st.write.state is
when IDLE => when IDLE =>
if controller_to_socbridge_driver.request = '1' and controller_to_socbridge_driver.instruction = WRITE if controller_to_socbridge_driver.request = '1' and controller_to_socbridge_driver.instruction = WRITE
and trans_st.write.curr_inst.request = '0' then and trans_st.write.inst.request = '0' then
trans_st.write.curr_inst <= controller_to_socbridge_driver; trans_st.write.inst.request <= controller_to_socbridge_driver.request;
trans_st.write.inst.address <= controller_to_socbridge_driver.address;
trans_st.write.inst.access_count <= controller_to_socbridge_driver.seq_mem_access_count;
else else
end if; end if;
trans_st.write.is_first_word <= '1'; trans_st.write.is_first_word <= '1';
when SEND => when SEND =>
if trans_st.write.inst.access_count mod 256 = 0 then
trans_st.write.is_first_word <= '1';
elsif st.last_sent_transaction = READ or st.last_sent_transaction = READ_ADD
or next_tx_transaction = READ or next_tx_transaction = READ_ADD then
trans_st.write.is_first_word <= '1';
else
trans_st.write.is_first_word <= '0';
end if;
when SEND_ACCEPTED => when SEND_ACCEPTED =>
trans_st.write.curr_inst.seq_mem_access_count <= trans_st.write.curr_inst.seq_mem_access_count - MAX_PKT_SIZE; trans_st.write.inst.access_count <= trans_st.write.inst.access_count - MAX_PKT_SIZE;
trans_st.write.curr_inst.address <= std_logic_vector(unsigned(trans_st.write.curr_inst.address) + MAX_PKT_SIZE); trans_st.write.inst.address <= std_logic_vector(unsigned(trans_st.write.inst.address) + MAX_PKT_SIZE);
when AWAIT => when AWAIT =>
if ((ip_to_socbridge_driver.fifo.used_slots = 0 and ip_to_socbridge_driver.flush = '1') if ((ip_to_socbridge_driver.fifo.used_slots = 0 and ip_to_socbridge_driver.flush = '1')
or trans_st.write.curr_inst.seq_mem_access_count <= 0) or trans_st.write.inst.access_count <= 0)
and st.curr_tx_state = TX_W_BODY then and st.tx_state = TX_W_BODY then
trans_st.write.curr_inst.request <= '0'; trans_st.write.inst <= ctrl_inst_reset_vec;
trans_st.write.curr_inst.address <= (others => '0');
trans_st.write.curr_inst.seq_mem_access_count <= 0;
trans_st.write.curr_inst.instruction <= NO_OP;
end if; end if;
if trans_st.write.curr_inst.seq_mem_access_count mod 256 = 0 then if trans_st.write.inst.access_count mod 256 = 0 then
trans_st.write.is_first_word <= '1'; trans_st.write.is_first_word <= '1';
elsif trans_st.read.curr_inst.instruction /= NO_OP then elsif st.last_sent_transaction = READ or st.last_sent_transaction = READ_ADD
or next_tx_transaction = READ or next_tx_transaction = READ_ADD then
trans_st.write.is_first_word <= '1'; trans_st.write.is_first_word <= '1';
else else
trans_st.write.is_first_word <= '0'; trans_st.write.is_first_word <= '0';
end if; end if;
when others => when others =>
end case; end case;
case trans_st.read.curr_state is case trans_st.read.state is
when IDLE => when IDLE =>
if controller_to_socbridge_driver.request = '1' and controller_to_socbridge_driver.instruction = READ then if controller_to_socbridge_driver.request = '1' and controller_to_socbridge_driver.instruction = READ then
trans_st.read.curr_inst <= controller_to_socbridge_driver; trans_st.read.inst.request <= controller_to_socbridge_driver.request;
trans_st.read.inst.address <= controller_to_socbridge_driver.address;
trans_st.read.inst.access_count <= controller_to_socbridge_driver.seq_mem_access_count;
else else
end if; end if;
trans_st.read.is_first_word <= '1'; trans_st.read.is_first_word <= '1';
when SEND => when SEND =>
when SEND_ACCEPTED => if trans_st.read.inst.access_count mod 256 = 0 then
trans_st.read.curr_inst.seq_mem_access_count <= trans_st.read.curr_inst.seq_mem_access_count - MAX_PKT_SIZE;
trans_st.read.curr_inst.address <= std_logic_vector(unsigned(trans_st.read.curr_inst.address) + MAX_PKT_SIZE);
when AWAIT =>
if (ip_to_socbridge_driver.flush = '1' or trans_st.read.curr_inst.seq_mem_access_count <= 0) and st.curr_tx_state = IDLE then
trans_st.read.curr_inst.request <= '0';
trans_st.read.curr_inst.address <= (others => '0');
trans_st.read.curr_inst.seq_mem_access_count <= 0;
trans_st.read.curr_inst.instruction <= NO_OP;
end if;
if trans_st.read.curr_inst.seq_mem_access_count mod 256 = 0 then
trans_st.read.is_first_word <= '1'; trans_st.read.is_first_word <= '1';
elsif trans_st.write.curr_inst.instruction /= NO_OP then elsif st.last_sent_transaction = WRITE or st.last_sent_transaction = WRITE_ADD
or next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD then
trans_st.read.is_first_word <= '1';
else
trans_st.read.is_first_word <= '0';
end if;
when SEND_ACCEPTED =>
trans_st.read.inst.access_count <= trans_st.read.inst.access_count - MAX_PKT_SIZE;
trans_st.read.inst.address <= std_logic_vector(unsigned(trans_st.read.inst.address) + MAX_PKT_SIZE);
when AWAIT =>
if (ip_to_socbridge_driver.flush = '1' or trans_st.read.inst.access_count <= 0) and st.tx_state = IDLE then
trans_st.read.inst <= ctrl_inst_reset_vec;
end if;
if trans_st.read.inst.access_count mod 256 = 0 then
trans_st.read.is_first_word <= '1';
elsif st.last_sent_transaction = WRITE or st.last_sent_transaction = WRITE_ADD
or next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD then
trans_st.read.is_first_word <= '1'; trans_st.read.is_first_word <= '1';
else else
trans_st.read.is_first_word <= '0'; trans_st.read.is_first_word <= '0';

View File

@ -8,6 +8,7 @@ use gan_ganimede.io_types.all;
package socbridge_driver_pkg is package socbridge_driver_pkg is
subtype command_size_t is integer range 0 to 128; subtype command_size_t is integer range 0 to 128;
constant MAX_IN_FLIGHT : integer := 1;
type transaction_t is type transaction_t is
(NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR, WRITE_ACK, READ_RESPONSE); (NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR, WRITE_ACK, READ_RESPONSE);
@ -17,14 +18,20 @@ package socbridge_driver_pkg is
RX_R_BODY, RX_HEADER, RX_W_BODY); RX_R_BODY, RX_HEADER, RX_W_BODY);
type tx_state_t is type tx_state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4, TX_AWAIT, (IDLE, ADDR1, ADDR2, ADDR3, ADDR4,
TX_HEADER, TX_W_BODY, TX_R_BODY); TX_HEADER, TX_W_BODY, TX_R_BODY);
--- TRANSLATOR --- --- TRANSLATOR ---
type ctrl_inst_state_t is (IDLE, SEND, SEND_ACCEPTED, AWAIT); type ctrl_inst_state_t is (IDLE, SEND, SEND_ACCEPTED, AWAIT);
type ctrl_inst_t is record
request : std_logic;
address : std_logic_vector(address_width - 1 downto 0);
access_count : integer;
end record ctrl_inst_t;
type ctrl_inst_state_rec_t is record type ctrl_inst_state_rec_t is record
curr_inst : controller_to_socbridge_driver_t; inst : ctrl_inst_t;
curr_state : ctrl_inst_state_t; state : ctrl_inst_state_t;
is_first_word : std_logic; is_first_word : std_logic;
end record ctrl_inst_state_rec_t; end record ctrl_inst_state_rec_t;
@ -40,18 +47,19 @@ package socbridge_driver_pkg is
end record ext_protocol_t; end record ext_protocol_t;
type state_rec_t is record type state_rec_t is record
curr_rx_transaction : transaction_t; rx_transaction : transaction_t;
curr_tx_transaction : transaction_t; tx_transaction : transaction_t;
curr_rx_state: rx_state_t; rx_state: rx_state_t;
curr_tx_state: tx_state_t; tx_state: tx_state_t;
ext_to_socbridge_driver_reg, socbridge_driver_to_ext_reg : ext_protocol_t; ext_to_socbridge_driver_reg, socbridge_driver_to_ext_reg : ext_protocol_t;
tx_stage, rx_stage : NATURAL; tx_stage, rx_stage : NATURAL;
tx_data_size, rx_data_size : integer; tx_data_size, rx_data_size : integer;
curr_write_data : std_logic_vector(31 downto 0); tx_addr : std_logic_vector(31 downto 0);
curr_read_data : std_logic_vector(31 downto 0); read_in_flight : boolean;
curr_tx_addr : std_logic_vector(31 downto 0); write_in_flight : boolean;
curr_rx_read_addr : std_logic_vector(31 downto 0); last_sent_transaction : transaction_t;
curr_rx_write_addr : std_logic_vector(31 downto 0); manager_addr : std_logic_vector(31 downto 0);
manager_data : std_logic_vector(31 downto 0);
end record state_rec_t; end record state_rec_t;
impure function calc_parity( impure function calc_parity(
d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0) d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0)
@ -64,6 +72,50 @@ package socbridge_driver_pkg is
pure function get_size_bits(size : command_size_t) return std_logic_vector; pure function get_size_bits(size : command_size_t) return std_logic_vector;
pure function get_size_bits_sim(size : command_size_t) return std_logic_vector; pure function get_size_bits_sim(size : command_size_t) return std_logic_vector;
constant ctrl_inst_reset_vec : ctrl_inst_t := (
request => '0',
address => (others => '0'),
access_count => 0
);
constant translator_reset_vec : translator_state_t := (
read => (
state => IDLE,
inst => ctrl_inst_reset_vec,
is_first_word => '1'
),
write => (
state => IDLE,
inst => ctrl_inst_reset_vec,
is_first_word => '1'
)
);
constant ext_protocol_reset_vec : ext_protocol_t := (
data => (others => '0'),
clk => '0',
parity => '1'
);
constant st_reset_vec : state_rec_t := (
ext_to_socbridge_driver_reg => ext_protocol_reset_vec,
socbridge_driver_to_ext_reg => ext_protocol_reset_vec,
tx_state => IDLE,
rx_state => IDLE,
tx_stage => 0,
rx_stage => 0,
tx_transaction => NO_OP,
rx_transaction => NO_OP,
tx_data_size => 0,
rx_data_size => 0,
tx_addr => (others => '0'),
manager_addr => (others => '0'),
manager_data => (others => '0'),
read_in_flight => false,
write_in_flight => false,
last_sent_transaction => NO_OP
);
end package socbridge_driver_pkg; end package socbridge_driver_pkg;
package body socbridge_driver_pkg is package body socbridge_driver_pkg is