library IEEE; use IEEE.std_logic_1164.all; use IEEE.MATH_REAL.all; use ieee.numeric_std.all; entity fifo_deserializer is generic ( output_width : natural := 8; input_width : natural := 8 ); port ( rst, clk : in std_logic; ready_in : in std_logic; ready_out : out std_logic; valid_in : in std_logic; valid_out : out std_logic; data_in : in std_logic_vector(input_width - 1 downto 0); data_out : out std_logic_vector(output_width - 1 downto 0) ); end entity fifo_deserializer; architecture rtl of fifo_deserializer is constant out_over_in : natural := output_width / input_width; type state_t is record count : integer; data : std_logic_vector(output_width - 1 downto 0); end record state_t; signal st : state_t; begin comb_proc: process(rst,clk,valid_in,ready_in,data_in,st) begin if st.count = out_over_in then valid_out <= '1'; else valid_out <= '0'; end if; if not (st.count = out_over_in) and ready_in = '1' then ready_out <= '1'; else ready_out <= '0'; end if; data_out <= st.data; end process comb_proc; seq_proc: process(clk, rst) begin if rst = '1' then st.count <= 0; st.data <= (others => '0'); elsif (rising_edge(clk)) then if st.count = out_over_in then st.count <= 0; elsif valid_in = '1' and ready_in = '1' then st.count <= st.count + 1; st.data((st.count + 1) * input_width - 1 downto st.count * input_width) <= data_in; end if; end if; end process seq_proc; end architecture rtl;