exjobb-public/src/socbridge/socbridge_driver.vhd

636 lines
27 KiB
VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library gan_manager;
use gan_manager.management_types.all;
library grlib;
use grlib.stdlib.all;
entity socbridge_driver is
generic(
MAX_PKT_SIZE : integer range 1 to 128 := 8;
BUFFER_SIZE : integer
);
port(
clk : in std_logic;
rst : in std_logic;
socbridge_clk : out std_logic;
controller_to_socbridge_driver : in controller_to_socbridge_driver_t;
socbridge_driver_to_controller : out socbridge_driver_to_controller_t;
manager_to_socbridge_driver : in manager_to_socbridge_driver_t;
socbridge_driver_to_manager : out socbridge_driver_to_manager_t;
ext_to_socbridge_driver : in ext_to_socbridge_driver_t;
socbridge_driver_to_ext : out socbridge_driver_to_ext_t;
ip_to_socbridge_driver : in ip_to_socbridge_driver_t;
socbridge_driver_to_ip : out socbridge_driver_to_ip_t
);
end entity socbridge_driver;
architecture rtl of socbridge_driver is
signal next_parity_out : std_logic;
signal ext_to_socbridge_driver_rec : ext_protocol_t;
signal next_data_out : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal next_rx_transaction : transaction_t;
signal next_tx_transaction : transaction_t;
signal next_tx_data_size, next_rx_data_size : integer;
signal next_rx_state : rx_state_t;
signal next_tx_state : tx_state_t;
signal st : state_rec_t;
--- TRANSLATOR ---
signal trans_st : translator_state_t;
signal trans_read_next_state : ctrl_inst_state_t;
signal trans_write_next_state : ctrl_inst_state_t;
--- FSM COMMUNICATION ---
--- MANAGEMENT COMMUNICATION ---
begin
comb_proc: process(ext_to_socbridge_driver_rec, ip_to_socbridge_driver,
controller_to_socbridge_driver, st, trans_st)
variable curr_response_bits : std_logic_vector(4 downto 0);
variable local_next_rx_transaction : transaction_t;
variable local_next_tx_transaction : transaction_t;
variable local_next_data_out : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
begin
-- DEFAULT VALUES
-- Helpful Bindings --
ext_to_socbridge_driver_rec.data <= ext_to_socbridge_driver.payload;
ext_to_socbridge_driver_rec.clk <= ext_to_socbridge_driver.control(1);
ext_to_socbridge_driver_rec.parity <= ext_to_socbridge_driver.control(0);
socbridge_clk <= ext_to_socbridge_driver_rec.clk;
socbridge_driver_to_ip.used_slots <= 0;
next_rx_data_size <= 2 ** to_integer(unsigned(ext_to_socbridge_driver_rec.data(2 downto 0)));
curr_response_bits := ext_to_socbridge_driver_rec.data(7 downto 3);
-- Set helper var to current transaction seen at the input.
local_next_rx_transaction := NO_OP;
if curr_response_bits = "10000" then
local_next_rx_transaction := WRITE_ADD;
elsif curr_response_bits = "10100" then
local_next_rx_transaction := WRITE;
elsif curr_response_bits = "11000" then
local_next_rx_transaction := READ_ADD;
elsif curr_response_bits = "11100" then
local_next_rx_transaction := READ;
elsif curr_response_bits = "01001" then
local_next_rx_transaction := P_ERR;
elsif curr_response_bits = "00101" or curr_response_bits = "00001" then
local_next_rx_transaction := WRITE_ACK;
elsif curr_response_bits = "01100" or curr_response_bits = "01000" then
local_next_rx_transaction := READ_RESPONSE;
end if;
-- Outputs --
socbridge_driver_to_ext.payload <= st.socbridge_driver_to_ext_reg.data;
socbridge_driver_to_ext.control(0) <= st.socbridge_driver_to_ext_reg.parity;
socbridge_driver_to_ext.control(1) <= st.socbridge_driver_to_ext_reg.clk;
if trans_st.read.state = IDLE then
socbridge_driver_to_controller.is_reading <= '0';
else
socbridge_driver_to_controller.is_reading <= '1';
end if;
if trans_st.write.state = IDLE then
socbridge_driver_to_controller.is_writing <= '0';
else
socbridge_driver_to_controller.is_writing <= '1';
end if;
--- Next State Assignments ---
--- ### TX NEXT STATE ASSIGNMENTS ### ---
case st.tx_state is
when IDLE =>
if (local_next_tx_transaction = WRITE or local_next_tx_transaction = WRITE_ADD) and not st.write_in_flight then
next_tx_state <= TX_HEADER;
elsif (local_next_tx_transaction = READ or local_next_tx_transaction = READ_ADD) and not st.read_in_flight then
next_tx_state <= TX_HEADER;
elsif local_next_tx_transaction = READ_RESPONSE or local_next_tx_transaction = WRITE_ACK then
next_tx_state <= TX_HEADER;
else
next_tx_state <= IDLE;
end if;
when TX_HEADER =>
-- Commands
if st.tx_transaction = WRITE_ADD or st.tx_transaction = READ_ADD then
next_tx_state <= ADDR1;
elsif st.tx_transaction = WRITE then
next_tx_state <= TX_W_BODY;
elsif st.tx_transaction = READ then
next_tx_state <= IDLE;
-- Responses
elsif st.tx_transaction = READ_RESPONSE then
next_tx_state <= TX_R_BODY;
else
next_tx_state <= IDLE;
end if;
when TX_R_BODY =>
if st.tx_stage <= 1 then
next_tx_state <= IDLE;
else
next_tx_state <= TX_R_BODY;
end if;
when ADDR1 =>
next_tx_state <= ADDR2;
when ADDR2 =>
next_tx_state <= ADDR3;
when ADDR3 =>
next_tx_state <= ADDR4;
when ADDR4 =>
if st.tx_transaction = READ_ADD then
next_tx_state <= IDLE;
elsif st.tx_transaction = WRITE_ADD then
next_tx_state <= TX_W_BODY;
else
next_tx_state <= IDLE;
end if;
when TX_W_BODY =>
if st.tx_stage <= 1 then
next_tx_state <= IDLE;
else
next_tx_state <= TX_W_BODY;
end if;
end case;
--- Next State Assignment Of RX FSM ---
case st.rx_state is
when IDLE =>
if local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
next_rx_state <= IDLE;
end if;
when RX_HEADER =>
-- Commands
if st.rx_transaction = WRITE_ADD or st.rx_transaction = READ_ADD then
next_rx_state <= ADDR1;
elsif st.rx_transaction = WRITE then
next_rx_state <= RX_W_BODY;
elsif st.rx_transaction = READ then
next_rx_state <= RX_AWAIT;
-- Responses
elsif st.rx_transaction = READ_RESPONSE then
next_rx_state <= RX_R_BODY;
elsif local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
next_rx_state <= IDLE;
end if;
when RX_R_BODY =>
if st.rx_stage <= 1 then
if local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
next_rx_state <= IDLE;
end if;
else
next_rx_state <= RX_R_BODY;
end if;
when ADDR1 =>
next_rx_state <= ADDR2;
when ADDR2 =>
next_rx_state <= ADDR3;
when ADDR3 =>
next_rx_state <= ADDR4;
when ADDR4 =>
if st.rx_transaction = READ_ADD then
next_rx_state <= RX_AWAIT;
elsif st.rx_transaction = WRITE_ADD then
next_rx_state <= RX_W_BODY;
else
next_rx_state <= IDLE; -- Potentially superfluous safety
end if;
when RX_W_BODY =>
if st.rx_stage <= 1 then
next_rx_state <= RX_AWAIT;
else
next_rx_state <= RX_W_BODY;
end if;
when RX_AWAIT =>
-- Wait for TX FSM to send a response
if (st.rx_transaction = WRITE_ADD or st.rx_transaction = WRITE)
and st.tx_transaction = WRITE_ACK then
next_rx_state <= IDLE;
elsif (st.rx_transaction = READ_ADD or st.rx_transaction = READ)
and st.tx_transaction = READ_RESPONSE and st.tx_stage = 1 then
next_rx_state <= IDLE;
else
next_rx_state <= RX_AWAIT;
end if;
end case;
--- Combinatorial output based on current state ---
local_next_data_out := (others => '0');
socbridge_driver_to_ip.ready <= '0';
--- ### TX_STATE BASED OUTPUT ### ---
case st.tx_state is
when IDLE =>
when TX_HEADER =>
if st.tx_transaction = WRITE_ACK or st.tx_transaction = READ_RESPONSE then
local_next_data_out := get_header_bits(st.tx_transaction, st.rx_transaction) & get_size_bits(st.rx_data_size);
else
local_next_data_out := get_header_bits(st.tx_transaction, st.rx_transaction) & get_size_bits(st.tx_data_size);
end if;
if st.tx_transaction = WRITE then
socbridge_driver_to_ip.ready <= '1';
end if;
when TX_W_BODY =>
if st.tx_stage > 1 then
socbridge_driver_to_ip.ready <= '1';
end if;
if st.tx_stage > 0 then
if ip_to_socbridge_driver.fifo.valid = '1' then
local_next_data_out := ip_to_socbridge_driver.fifo.data;
else
local_next_data_out := (others => '0');
end if;
end if;
when TX_R_BODY =>
if st.tx_stage > 0 then
local_next_data_out := st.manager_data((((st.tx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.tx_stage - 1) mod 4) + 1) - 1) * 8);
end if;
when ADDR1 =>
local_next_data_out := st.tx_addr(31 downto 24);
when ADDR2 =>
local_next_data_out := st.tx_addr(23 downto 16);
when ADDR3 =>
local_next_data_out := st.tx_addr(15 downto 8);
when ADDR4 =>
local_next_data_out := st.tx_addr(7 downto 0);
if st.tx_transaction = WRITE_ADD then
socbridge_driver_to_ip.ready <= '1';
end if;
end case;
--- ### RX_STATE BASED OUTPUT ### ---
socbridge_driver_to_manager.valid <= '0';
socbridge_driver_to_manager.data <= st.manager_data;
socbridge_driver_to_manager.address <= st.manager_addr;
socbridge_driver_to_ip.valid <= '0';
socbridge_driver_to_ip.data <= st.ext_to_socbridge_driver_reg.data;
case st.rx_state is
when RX_W_BODY =>
if st.rx_stage mod 4 = 0 and st.rx_stage /= st.rx_data_size then
socbridge_driver_to_manager.valid <= '1';
end if;
when RX_R_BODY =>
socbridge_driver_to_ip.valid <= '1';
when RX_AWAIT =>
if st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD then
socbridge_driver_to_manager.valid <= '1';
end if;
when others =>
end case;
next_parity_out <= calc_parity(local_next_data_out);
--- TRANSLATOR ---
--- Next state assignment
case trans_st.write.state is
when IDLE =>
if st.rx_transaction = READ or st.rx_transaction = READ_ADD
or st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD then
trans_write_next_state <= IDLE;
elsif trans_st.write.inst.request = '1' and (ip_to_socbridge_driver.fifo.used_slots >= MAX_PKT_SIZE
or ip_to_socbridge_driver.flush = '1') then
trans_write_next_state <= SEND;
else
trans_write_next_state <= IDLE;
end if;
-- Wait for driver to go idle and send next instruction. Then enter AWAIT
when SEND =>
if st.tx_transaction = WRITE or st.tx_transaction = WRITE_ADD then
trans_write_next_state <= SEND_ACCEPTED;
else
trans_write_next_state <= SEND;
end if;
-- Transisitonal state to decrement counter in transition between SEND and AWAIT.
when SEND_ACCEPTED =>
trans_write_next_state <= AWAIT;
-- Wait for driver to finish current instruction, then reenter SEND
when AWAIT =>
if trans_st.write.inst.access_count <= MAX_PKT_SIZE and not st.write_in_flight then
trans_write_next_state <= IDLE;
elsif ip_to_socbridge_driver.fifo.used_slots = 0 and ip_to_socbridge_driver.flush = '1'
and not st.write_in_flight then
trans_write_next_state <= IDLE;
elsif not st.write_in_flight and (ip_to_socbridge_driver.fifo.used_slots >= MAX_PKT_SIZE
or ip_to_socbridge_driver.flush = '1') then
trans_write_next_state <= SEND;
else
trans_write_next_state <= AWAIT;
end if;
end case;
case trans_st.read.state is
when IDLE =>
if next_rx_transaction = READ or next_rx_transaction = READ_ADD
or next_rx_transaction = WRITE or next_rx_transaction = WRITE_ADD then
trans_read_next_state <= IDLE;
elsif st.rx_transaction = READ or st.rx_transaction = READ_ADD
or st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD then
trans_read_next_state <= IDLE;
elsif trans_st.read.inst.request = '1' and BUFFER_SIZE - ip_to_socbridge_driver.read_fifo.used_slots > 2*MAX_PKT_SIZE then
trans_read_next_state <= SEND;
else
trans_read_next_state <= IDLE;
end if;
-- Wait for driver to go idle and send next instruction. Then enter AWAIT
when SEND =>
if st.tx_transaction = READ or st.tx_transaction = READ_ADD then
trans_read_next_state <= SEND_ACCEPTED;
else
trans_read_next_state <= SEND;
end if;
-- Transisitonal state to decrement counter in transition between SEND and AWAIT.
when SEND_ACCEPTED =>
trans_read_next_state <= AWAIT;
-- Wait for driver to finish current instruction, then reenter SEND
when AWAIT =>
if trans_st.read.inst.access_count <= MAX_PKT_SIZE and not st.read_in_flight then
trans_read_next_state <= IDLE;
elsif ip_to_socbridge_driver.flush = '1'and not st.read_in_flight then
trans_read_next_state <= IDLE;
elsif not st.read_in_flight and BUFFER_SIZE - ip_to_socbridge_driver.read_fifo.used_slots > 2*MAX_PKT_SIZE then
trans_read_next_state <= SEND;
else
trans_read_next_state <= AWAIT;
end if;
end case;
--- NEXT TX TRANSACTION ---
local_next_tx_transaction := NO_OP;
next_tx_data_size <= 0;
if trans_st.read.state = IDLE and trans_st.write.state = IDLE and st.rx_state = RX_AWAIT then
if (st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD) and manager_to_socbridge_driver.ready = '1' then
local_next_tx_transaction := WRITE_ACK;
elsif (st.rx_transaction = READ or st.rx_transaction = READ_ADD) and manager_to_socbridge_driver.valid = '1' then
next_tx_data_size <= st.rx_data_size;
local_next_tx_transaction := READ_RESPONSE;
end if;
elsif trans_st.read.state = SEND
and not ((st.last_sent_transaction = READ or st.last_sent_transaction = READ_ADD) and trans_st.write.state = SEND) then
if trans_st.read.is_first_word = '1' then
local_next_tx_transaction := READ_ADD;
else
local_next_tx_transaction := READ;
end if;
if trans_st.read.inst.access_count > MAX_PKT_SIZE then
next_tx_data_size <= MAX_PKT_SIZE;
elsif trans_st.read.inst.access_count > 0 then
next_tx_data_size <= trans_st.read.inst.access_count;
else
next_tx_data_size <= 0;
end if;
elsif trans_st.write.state = SEND and not st.read_in_flight then
if trans_st.write.is_first_word = '1' then
local_next_tx_transaction := WRITE_ADD;
else
local_next_tx_transaction := WRITE;
end if;
if trans_st.write.inst.access_count > MAX_PKT_SIZE then
next_tx_data_size <= MAX_PKT_SIZE;
elsif trans_st.write.inst.access_count > 0 then
next_tx_data_size <= trans_st.write.inst.access_count;
else
next_tx_data_size <= 0;
end if;
end if;
next_tx_transaction <= local_next_tx_transaction;
next_rx_transaction <= local_next_rx_transaction;
next_data_out <= local_next_data_out;
end process comb_proc;
-- Process updating internal registers based on primary clock
seq_proc: process(ext_to_socbridge_driver_rec.clk, rst, clk)
begin
if(rst = '1') then
st <= st_reset_vec;
elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then
st.ext_to_socbridge_driver_reg.data <= ext_to_socbridge_driver_rec.data;
-- PARITY CHECK NOT IMPLEMENTED, REMOVING
--st.ext_to_socbridge_driver_reg.parity <= ext_to_socbridge_driver_rec.parity;
st.socbridge_driver_to_ext_reg.data <= next_data_out;
st.socbridge_driver_to_ext_reg.clk <= not st.socbridge_driver_to_ext_reg.clk;
st.socbridge_driver_to_ext_reg.parity <= next_parity_out;
st.tx_state <= next_tx_state;
st.rx_state <= next_rx_state;
case st.tx_state is
when IDLE =>
if ip_to_socbridge_driver.flush = '1' then
st.last_sent_transaction <= NO_OP;
end if;
if (next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD
or next_tx_transaction = READ or next_tx_transaction = READ_ADD) then
if not st.read_in_flight or not st.write_in_flight then
st.tx_transaction <= next_tx_transaction;
st.tx_data_size <= next_tx_data_size;
else
st.tx_transaction <= NO_OP;
st.tx_data_size <= 0;
end if;
else
st.tx_transaction <= next_tx_transaction;
st.tx_data_size <= next_tx_data_size;
end if;
if next_tx_transaction = WRITE_ADD or next_tx_transaction = WRITE
or next_tx_transaction = READ_RESPONSE then
st.tx_addr <= trans_st.write.inst.address;
st.tx_stage <= next_tx_data_size;
else
st.tx_addr <= trans_st.read.inst.address;
st.tx_stage <= 0;
end if;
when TX_HEADER =>
if st.tx_transaction = WRITE or st.tx_transaction = WRITE_ADD then
st.last_sent_transaction <= st.tx_transaction;
if not (st.rx_state = RX_HEADER and st.rx_transaction = WRITE_ACK) then
st.write_in_flight <= true;
end if;
elsif st.tx_transaction = READ or st.tx_transaction = READ_ADD then
st.last_sent_transaction <= st.tx_transaction;
if not (st.rx_state = RX_HEADER and st.rx_transaction = READ_RESPONSE) then
st.read_in_flight <= true;
end if;
end if;
when TX_W_BODY =>
if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1;
end if;
when TX_R_BODY =>
if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1;
end if;
when others =>
end case;
case st.rx_state is
when IDLE =>
st.rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
when RX_HEADER =>
if st.rx_transaction = WRITE_ACK then
if not (st.tx_state = TX_HEADER and (st.tx_transaction = WRITE or st.tx_transaction = WRITE_ADD)) then
st.write_in_flight <= false;
end if;
if next_rx_transaction /= NO_OP then
st.rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
end if;
elsif st.rx_transaction = READ_RESPONSE then
if not (st.tx_state = TX_HEADER and (st.tx_transaction = READ or st.tx_transaction = READ_ADD)) then
st.read_in_flight <= false;
end if;
end if;
when RX_R_BODY =>
if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1;
end if;
if next_rx_transaction /= NO_OP and st.rx_stage <= 1 then
st.rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
end if;
when RX_W_BODY =>
if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1;
st.manager_data((((st.rx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.rx_stage - 1) mod 4) + 1) - 1) * 8) <= st.ext_to_socbridge_driver_reg.data;
end if;
if (st.rx_stage - 2) mod 4 = 0 and st.rx_data_size - st.rx_stage > 4 then
st.manager_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.manager_addr) + 4), 32));
end if;
when RX_AWAIT =>
st.manager_data <= manager_to_socbridge_driver.data;
if st.tx_transaction = READ_RESPONSE or st.tx_transaction = WRITE_ACK then
if (st.rx_transaction = READ or st.rx_transaction = READ_ADD) and (st.tx_stage - 2) mod 4 = 0 then
st.manager_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.manager_addr) + 4), 32));
elsif (st.rx_transaction = WRITE or st.rx_transaction = WRITE_ADD) and (st.rx_stage - 2) mod 4 = 0 then
st.manager_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.manager_addr) + 4), 32));
end if;
end if;
when ADDR1 =>
if st.rx_transaction = READ_ADD then
st.manager_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
else
st.manager_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR2 =>
if st.rx_transaction = READ_ADD then
st.manager_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
else
st.manager_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR3 =>
if st.rx_transaction = READ_ADD then
st.manager_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
else
st.manager_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR4 =>
if st.rx_transaction = READ_ADD then
st.manager_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
else
st.manager_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
end if;
when others =>
end case;
end if;
--- TRANSLATOR ---
if(rst = '1') then
trans_st <= translator_reset_vec;
elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then
trans_st.read.state <= trans_read_next_state;
trans_st.write.state <= trans_write_next_state;
case trans_st.write.state is
when IDLE =>
if controller_to_socbridge_driver.request = '1' and controller_to_socbridge_driver.instruction = WRITE
and trans_st.write.inst.request = '0' then
trans_st.write.inst.request <= controller_to_socbridge_driver.request;
trans_st.write.inst.address <= controller_to_socbridge_driver.address;
trans_st.write.inst.access_count <= controller_to_socbridge_driver.seq_mem_access_count;
else
end if;
trans_st.write.is_first_word <= '1';
when SEND =>
if trans_st.write.inst.access_count mod 256 = 0 then
trans_st.write.is_first_word <= '1';
elsif st.last_sent_transaction = READ or st.last_sent_transaction = READ_ADD
or next_tx_transaction = READ or next_tx_transaction = READ_ADD then
trans_st.write.is_first_word <= '1';
else
trans_st.write.is_first_word <= '0';
end if;
when SEND_ACCEPTED =>
trans_st.write.inst.access_count <= trans_st.write.inst.access_count - MAX_PKT_SIZE;
trans_st.write.inst.address <= std_logic_vector(unsigned(trans_st.write.inst.address) + MAX_PKT_SIZE);
when AWAIT =>
if ((ip_to_socbridge_driver.fifo.used_slots = 0 and ip_to_socbridge_driver.flush = '1')
or trans_st.write.inst.access_count <= 0)
and st.tx_state = TX_W_BODY then
trans_st.write.inst <= ctrl_inst_reset_vec;
end if;
if trans_st.write.inst.access_count mod 256 = 0 then
trans_st.write.is_first_word <= '1';
elsif st.last_sent_transaction = READ or st.last_sent_transaction = READ_ADD
or next_tx_transaction = READ or next_tx_transaction = READ_ADD then
trans_st.write.is_first_word <= '1';
else
trans_st.write.is_first_word <= '0';
end if;
when others =>
end case;
case trans_st.read.state is
when IDLE =>
if controller_to_socbridge_driver.request = '1' and controller_to_socbridge_driver.instruction = READ then
trans_st.read.inst.request <= controller_to_socbridge_driver.request;
trans_st.read.inst.address <= controller_to_socbridge_driver.address;
trans_st.read.inst.access_count <= controller_to_socbridge_driver.seq_mem_access_count;
else
end if;
trans_st.read.is_first_word <= '1';
when SEND =>
if trans_st.read.inst.access_count mod 256 = 0 then
trans_st.read.is_first_word <= '1';
elsif st.last_sent_transaction = WRITE or st.last_sent_transaction = WRITE_ADD
or next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD then
trans_st.read.is_first_word <= '1';
else
trans_st.read.is_first_word <= '0';
end if;
when SEND_ACCEPTED =>
trans_st.read.inst.access_count <= trans_st.read.inst.access_count - MAX_PKT_SIZE;
trans_st.read.inst.address <= std_logic_vector(unsigned(trans_st.read.inst.address) + MAX_PKT_SIZE);
when AWAIT =>
if (ip_to_socbridge_driver.flush = '1' or trans_st.read.inst.access_count <= 0) and st.tx_state = IDLE then
trans_st.read.inst <= ctrl_inst_reset_vec;
end if;
if trans_st.read.inst.access_count mod 256 = 0 then
trans_st.read.is_first_word <= '1';
elsif st.last_sent_transaction = WRITE or st.last_sent_transaction = WRITE_ADD
or next_tx_transaction = WRITE or next_tx_transaction = WRITE_ADD then
trans_st.read.is_first_word <= '1';
else
trans_st.read.is_first_word <= '0';
end if;
when others =>
end case;
end if;
end process seq_proc;
end architecture rtl;