Compare commits

...

28 Commits

Author SHA1 Message Date
2aaeba07b9 Adjusted io types for communication between control unit and driver. Also started testbench 2025-03-05 17:02:07 +01:00
4648c053dd Merge pull request 'ganimede-control-unit' (#9) from ganimede-control-unit into ganimede-toplevel-template
Reviewed-on: #9
2025-03-05 11:58:31 +01:00
38576e87f8 Merge pull request 'ganimede-driver-implementation' (#8) from ganimede-driver-implementation into ganimede-toplevel-template
Reviewed-on: #8
2025-03-05 11:52:38 +01:00
883bf6ea0c added support for reads with and without addresses 2025-03-04 17:10:48 +01:00
94e158d52c Made instruction a byte instead of a bit 2025-03-04 16:33:49 +01:00
78a830b82e added support for multi word addressable writes 2025-03-04 16:06:30 +01:00
044060364d Control unit tested and seems to work for the requirements of the basic version 2025-03-04 14:54:15 +01:00
6451f77dce in progress of adding addressing for write command 2025-03-03 17:13:16 +01:00
f8b93e6d06 testbench works 2025-03-03 16:59:06 +01:00
25431d2da2 testbench debgging 2025-03-03 16:46:02 +01:00
142e92f43d testbench almost done, needs debugging 2025-02-28 17:03:13 +01:00
d5ad4da4f5 added support for multi word writes 2025-02-27 16:11:16 +01:00
d9b0725b7e improved testbench and removed unnecessary delay caused by 2PM 2025-02-27 13:48:17 +01:00
a88dd13faf added socbrdige driver tb gtkwave config 2025-02-27 10:55:09 +01:00
966bdb85d1 started working on control unit testbench 2025-02-26 18:19:54 +01:00
2d63f99f7f At least i know what the problem is... 2025-02-26 17:57:03 +01:00
84f9101d8f Started work on control functionality, not tested 2025-02-25 17:11:29 +01:00
8f72602cc2 begun work on output logic based on state 2025-02-25 17:08:20 +01:00
63166587b6 cleaned up the code in accordance with the two process method 2025-02-25 16:17:34 +01:00
e2035f9daf added next_state concurrent assignment 2025-02-25 14:26:11 +01:00
e82e7b1554 added topology 2025-02-25 13:53:21 +01:00
9c0ef57be8 Started working on io for control unit 2025-02-24 17:13:00 +01:00
9d56b875fd made socbridge driver testbench and continued development on the driver 2025-02-24 17:11:25 +01:00
bd75d79bb3 inital work on the example socbridge driver 2025-02-20 16:23:00 +01:00
34326b4c56 added initial driver file 2025-02-20 14:24:58 +01:00
bc647d4708 fixed typing issue for driver definition and added fifo control signals to interface record 2025-02-20 14:23:14 +01:00
8e641fd8ff added more template stuff to ganimede 2025-02-20 10:08:51 +01:00
4d8d24701f began working on ganimede template. Unconstrained types are no longer needed 2025-02-17 17:01:30 +01:00
10 changed files with 1175 additions and 32 deletions

View File

@ -0,0 +1,24 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library work;
use work.io_types.all;
use work.socbridge_driver_tb_pkg.all;
entity control_socbridge_tb is
end entity control_socbridge_tb;
architecture tb of control_socbridge_tb is
begin
clock_proc: process
begin
for i in 0 to 50 loop
wait for cycle / 2;
clock <= not clock;
end loop;
wait;
end process clock_proc;
end architecture tb;

68
src/control_unit.vhd Normal file
View File

@ -0,0 +1,68 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
library work;
use work.io_types.all;
entity control_unit is
port (
clk, rst : in std_logic;
ext_control_in : in ext_control_unit_in_t;
ext_control_out : out ext_control_unit_out_t;
int_control_in : in int_control_unit_in_t;
int_control_out : out int_control_unit_out_t;
);
end entity control_unit;
architecture behave of control_unit is
type state_t is record
address: std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: std_logic_vector(seq_vector_length - 1 downto 0);
curr_driver: std_logic_vector(number_of_drivers - 1 downto 0); --one-hot encoded, 0 means disabled
ready: std_logic;
instruction: std_logic_vector(inst_word_width - 1 downto 0);
end record state_t;
signal state: state_t;
shared variable ored: std_logic;
begin
comb_proc: process(control_in, state)
begin
ored := '0';
ready_reduction: for i in 0 to number_of_drivers - 1 loop
ored := ored or int_control_in.active_driver(i);
end loop ready_reduction;
int_control_out.driver_id <= state.curr_driver;
int_control_out.address <= state.address;
int_control_out.seq_mem_access_count <= state.seq_mem_access_count;
int_control_out.ready <= state.ready;
int_control_out.instruction <= state.instruction;
end process comb_proc;
sync_proc: process(clk, state)
begin
if rising_edge(clk) then
if rst = '1' then
state <= ((others => '0'),
(others => '0'),
(others => '0'),
'1',
x"00");
else
state.ready <= not ored;
if ored = '0' then
state.address <= ext_control_in.address;
state.seq_mem_access_count <= ext_control_in.seq_mem_access_count;
state.curr_driver <= ext_control_in.driver_id;
state.instruction <= ext_control_in.instruction;
end if;
end if;
end if;
end process sync_proc;
end architecture behave;

91
src/control_unit_tb.vhd Normal file
View File

@ -0,0 +1,91 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use ieee.numeric_std.all;
library work;
use work.io_types.all;
entity control_unit_tb is
end entity control_unit_tb;
architecture tb of control_unit_tb is
constant cycle: Time := 10 ns;
signal clock: std_logic := '0';
signal reset: std_logic := '0';
signal control_input: control_unit_in_t := (
(others => '0'),
(others => '0'),
(others => '0'),
(others => '0'),
x"00");
signal control_output: control_unit_out_t := (
(others => '0'),
(others => '0'),
(others => '1'),
'1',
x"00");
signal current_driver : std_logic_vector(2 downto 0) := "000";
shared variable word_counter: natural := 0;
begin
clock_proc: process
begin
for i in 0 to 50 loop
wait for cycle / 2;
clock <= not clock;
end loop;
wait;
end process clock_proc;
control_unit_inst: entity work.control_unit
port map(
clk => clock,
rst => reset,
control_in => control_input,
control_out => control_output
);
stimulus_proc: process
begin
wait for cycle;
control_input.driver_id <= "010";
control_input.active_driver <= "000";
control_input.address <= x"F0F0F0F0";
control_input.seq_mem_access_count <= "00000011";
control_input.instruction <= x"81";
word_counter := 3;
wait for cycle;
current_driver <= "010";
report "entering loop with word_counter" & integer'image(word_counter);
for_loop: for i in word_counter - 1 downto 0 loop
wait for cycle;
report "words remaining are " & integer'image(i);
end loop for_loop;
control_input.active_driver <= "000";
report "Stim process done";
wait;
end process stimulus_proc;
monitor_proc: process
begin
wait for cycle;
wait for cycle;
assert control_output.driver_id = "010" report "Incorrect driver_id from control_unit" severity error;
assert control_output.address = x"F0F0F0F0" report "Incorrect address from control_unit" severity error;
assert control_output.instruction = x"81" report "Incorrect memory op from control_unit" severity error;
wait for 5 * cycle;
reset <= '1';
report "Monitor process done";
wait;
end process monitor_proc;
end architecture tb;

74
src/ganimede.vhd Normal file
View File

@ -0,0 +1,74 @@
library IEEE;
use IEEE.std_logic_1164.all;
library work;
use work.io_types.all;
entity ganimede is
port (
clk : in std_logic;
reset : in std_logic;
ext_interface_in : in ext_interface_in_t;
ext_interface_out : out ext_interface_out_t;
int_interface_in : in int_interface_in_t;
int_interface_out : out int_interface_out_t
);
end entity ganimede;
architecture rtl of ganimede is
--- SIGNAL DECLERATIONS ---
signal gan_int_interface_in : int_interface_in_t;
signal gan_int_interface_out : int_interface_out_t;
signal gan_ext_interface_in : ext_interface_in_t;
signal gan_ext_interface_out : ext_interface_out_t;
--signal gan_socbridge_WE_in : std_logic;
--signal gan_socbridge_WE_out : std_logic;
--signal gan_socbridge_is_full_in : std_logic;
--signal gan_socbridge_is_full_out : std_logic;
--- COMPONENT DECLERATIONS ---
--component fifo is
-- generic(
-- WIDTH : positive;
-- DEPTH : positive
-- );
-- port(
-- clk, reset, read_enable, write_enable : in std_logic;
-- is_full, is_empty : out std_logic;
-- data_in : in std_logic_vector(WIDTH - 1 downto 0);
-- data_out : out std_logic_vector(WIDTH - 1 downto 0)
-- );
--end component;
component socbridge_driver is
port(
clk : in std_logic;
reset : in std_logic;
ext_in : in ext_socbridge_in_t;
ext_out : out ext_socbridge_out_t;
int_in : out int_socbridge_in_t;
int_out : in int_socbridge_out_t
);
end component;
begin
--- CONNECT EXTERNAL SIGNALS TO INTERNAL CONNECTIONS ---
gan_int_interface_in <= int_interface_in;
int_interface_out <= gan_int_interface_out;
gan_ext_interface_in <= ext_interface_in;
ext_interface_out <= gan_ext_interface_out;
--- DRIVER INSTANTIATION ---
socbridge_driver_inst: socbridge_driver
port map(
clk => clk,
reset => reset,
ext_in => gan_ext_interface_in.socbridge,
ext_out => gan_ext_interface_out.socbridge,
int_in => gan_int_interface_in.socbridge,
int_out => gan_int_interface_out.socbridge
);
--- LATER WE ADD OPTIMIZATIONS HERE ---
end architecture rtl;

View File

@ -3,17 +3,14 @@ use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
package io_types is
--- CONSTANTS ---
constant number_of_drivers: natural := 3;
constant address_width: natural := 32;
constant seq_vector_length: natural := 8;
constant inst_word_width: natural := 8;
--- STANDARD TYPES ---
type ext_protocol_impl_t is record
payload, control: STD_LOGIC_VECTOR;
end record ext_protocol_impl_t;
type int_protocol_impl_t is record
payload : STD_LOGIC_VECTOR;
-- ADD MORE STUFF WHEN WE HAVE DECIDED UPON DRIVER INTERFACE
end record int_protocol_impl_t;
type ext_protocol_def_t is record
name: string (1 to 20);
payload_width: natural;
@ -22,46 +19,70 @@ package io_types is
type interface_inst_t is record
socbridge: ext_protocol_def_t;
spi: ext_protocol_def_t;
end record interface_inst_t;
type ext_control_unit_in_t is record
driver_id: std_logic_vector(number_of_drivers - 1 downto 0);
address: std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: std_logic_vector(seq_vector_length - 1 downto 0);
instruction: std_logic_vector(inst_word_width - 1 downto 0);
end record control_unit_in_t;
type ext_control_unit_out_t is record
ready: std_logic;
end record ext_control_unit_out_t;
type int_control_unit_out_t is record
driver_id: std_logic_vector(number_of_drivers - 1 downto 0);
address: std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: std_logic_vector(seq_vector_length - 1 downto 0);
instruction: std_logic_vector(inst_word_width - 1 downto 0);
end record control_unit_out_t;
type int_control_unit_in_t is record
active_driver: std_logic_vector(number_of_drivers - 1 downto 0)
end record int_control_unit_out_t;
--- PROTOCOL INFORMATION ---
constant interface_inst : interface_inst_t := (
("SoCBridge ", 8, 2, 2),
("SPI ", 1, 3, 3)
socbridge => ("SoCBridge ", 8, 2, 2)
);
--- AUTOGENERATED TYPES ---
type ext_socbridge_in_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0);
end record ext_socbridge_in_t;
type ext_socbridge_out_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0);
end record ext_socbridge_out_t;
type int_socbridge_in_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
write_enable_in, is_full_out : std_logic;
end record int_socbridge_in_t;
type int_socbridge_out_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
write_enable_out, is_full_in : std_logic;
end record int_socbridge_out_t;
type ext_interface_in_t is record
socbridge : ext_protocol_impl_t(
payload(interface_inst.socbridge.payload_width - 1 downto 0),
control(interface_inst.socbridge.control_width_in - 1 downto 0));
spi : ext_protocol_impl_t(
payload(interface_inst.spi.payload_width - 1 downto 0),
control(interface_inst.spi.control_width_in - 1 downto 0));
socbridge : ext_socbridge_in_t;
end record ext_interface_in_t;
type ext_interface_out_t is record
socbridge : ext_protocol_impl_t(
payload(interface_inst.socbridge.payload_width - 1 downto 0),
control(interface_inst.socbridge.control_width_out - 1 downto 0));
spi : ext_protocol_impl_t(
payload(interface_inst.spi.payload_width - 1 downto 0),
control(interface_inst.spi.control_width_out - 1 downto 0));
socbridge : ext_socbridge_out_t;
end record ext_interface_out_t;
type int_interface_in_t is record
socbridge : int_protocol_impl_t(
payload(interface_inst.socbridge.payload_width - 1 downto 0));
spi : int_protocol_impl_t(
payload(interface_inst.spi.payload_width - 1 downto 0));
socbridge : int_socbridge_in_t;
end record int_interface_in_t;
type int_interface_out_t is record
socbridge : int_protocol_impl_t(
payload(interface_inst.socbridge.payload_width - 1 downto 0));
spi : int_protocol_impl_t(
payload(interface_inst.spi.payload_width - 1 downto 0));
socbridge : int_socbridge_out_t;
end record int_interface_out_t;
end package io_types;

292
src/socbridge_driver.vhd Normal file
View File

@ -0,0 +1,292 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library work;
use work.io_types.all;
use work.socbridge_driver_tb_pkg.all;
entity socbridge_driver is
port(
clk : in std_logic;
rst : in std_logic;
cmd : in command_t;
address : in std_logic_vector(31 downto 0);
cmd_size: in positive;
ext_in : in ext_socbridge_in_t;
ext_out : out ext_socbridge_out_t;
int_in : out int_socbridge_in_t;
int_out : in int_socbridge_out_t
);
end entity socbridge_driver;
architecture rtl of socbridge_driver is
signal next_parity_out : std_logic;
signal ext_in_rec : ext_protocol_t;
shared variable ext_out_data_cmd : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal test : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal next_state : state_t;
signal curr_cmd_bits : std_logic_vector(4 downto 0);
signal curr_response : response_t;
signal curr_response_bits : std_logic_vector(4 downto 0);
signal st : state_rec_t;
begin
--- DEBUG GLOBAL BINDINGS ---
-- synthesis translate_off
G_next_parity_out <= next_parity_out;
G_ext_in_rec <= ext_in_rec;
G_next_state <= next_state;
G_ext_out_data_cmd <=test;
G_curr_command_bits <= curr_cmd_bits;
G_curr_response <= curr_response;
G_curr_response_bits <= curr_response_bits;
G_st <= st;
-- synthesis translate_on
ext_in_rec.data <= ext_in.payload;
ext_in_rec.clk <= ext_in.control(1);
ext_in_rec.parity <= ext_in.control(0);
-- Helpful Bindings --
curr_response_bits <= ext_in.payload(7 downto 3); -- CANT USE EXT_IN_REC here for some reason, the assignment becomes stasteful
-- Not sure that the two process method is helping here: if this was a normal
-- signal assignment there would be no confusion.
-- in the case ... <= ext_in_rec we get
-- curr_resp | ext_in_rec | ext_in
-- 00000 | 00000000 | 00001001
-- 00000 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
--
-- but in the case ... <= ext_in we get
-- curr_resp | ext_in_rec | ext_in
-- 00000 | 00000000 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
with curr_response_bits select
curr_response <= WRITE_ACK when "00001",
WRITE_ACK when "00101",
READ_RESPONSE when "01000",
READ_RESPONSE when "01100",
NO_OP when others;
comb_proc: process(ext_in, int_out, curr_response, st, cmd)
begin
-- Outputs
ext_out <= create_io_type_out_from_ext_protocol(st.ext_out_reg);
--- State Transition Diagram ---
--
--
--
-- +-----+
-- | |
-- \|/ /--+
-- IDLE<-------------------+
-- / \ |
-- / \ |
-- / \ |
-- \|/ \|/ |
-- TX_HEADER RX_HEADER |
-- |\ / | |
-- | \ / | |
-- | ADDR1 | |
-- | | | |
-- | \|/ | |
-- | ADDR2 | |
-- | | | |
-- | \|/ | |
-- | ADDR3 | |
-- | | | |
-- | \|/ | |
-- | ADDR4 | |
-- | /\ | |
-- | / \ | |
-- |-+ +----| +---+ |
-- \|/ \|/ \|/ | |
-- TX_BODY RX_RESPONSE---+ |
-- | | |
-- | +--+ | |
-- \|/\|/ | \|/ |
-- TX_ACK--+ RX_BODY |
-- | | |
-- | | |
-- +-----------+--------------+
--
--- Next State Assignment ---
case st.curr_state is
when IDLE =>
if cmd = WRITE or cmd = WRITE_ADD then
next_state <= TX_HEADER;
elsif cmd = READ or cmd = READ_ADD then
next_state <= RX_HEADER;
else
next_state <= IDLE;
end if;
when TX_HEADER =>
-- The header only takes one word (cycle) to transmit.
-- Continue to body or address directly afterwards.
if st.cmd_reg = WRITE_ADD then
next_state <= ADDR1;
else
next_state <= TX_BODY;
end if;
when TX_BODY =>
-- Here we want to stay in TX_BODY for the duration of a packet.
if st.write_stage = 0 then
next_state <= TX_ACK;
else
next_state <= TX_BODY;
end if;
when TX_ACK =>
-- Wait for write acknowledgement.
if curr_response = WRITE_ACK then
next_state <= IDLE;
else
next_state <= TX_ACK;
end if;
when RX_HEADER =>
-- The header only takes one word (cycle) to transmit.
-- Continue to awaiting response directly afterwards.
if st.cmd_reg = READ_ADD then
next_state <= ADDR1;
else
next_state <= RX_RESPONSE;
end if;
when RX_RESPONSE =>
-- Wait for read response.
if curr_response = READ_RESPONSE then
next_state <= RX_BODY_NO_OUT;
else
next_state <= RX_RESPONSE;
end if;
when RX_BODY_NO_OUT =>
next_state <= RX_BODY;
when RX_BODY =>
-- Here we want to stay in RX_BODY for the duration of a packet.
if st.read_stage = 0 then
next_state <= IDLE;
else
next_state <= RX_BODY;
end if;
when ADDR1 =>
-- Transmits the entire address and returns to the appropriate
next_state <= ADDR2;
when ADDR2 =>
next_state <= ADDR3;
when ADDR3 =>
next_state <= ADDR4;
when ADDR4 =>
if st.cmd_reg = WRITE or st.cmd_reg = WRITE_ADD then
next_state <= TX_BODY;
else
next_state <= RX_RESPONSE;
end if;
end case;
--- Combinatorial output based on current state ---
ext_out_data_cmd := (others => '0');
int_in.is_full_out <= '1';
int_in.write_enable_in <= '0';
int_in.payload <= (others => '0');
case st.curr_state is
when IDLE =>
if cmd = WRITE or cmd = WRITE_ADD then
ext_out_data_cmd := get_cmd_bits(cmd) & get_size_bits(cmd_size);
elsif cmd = READ or cmd = READ_ADD then
ext_out_data_cmd := get_cmd_bits(cmd) & get_size_bits(cmd_size);
end if;
when TX_HEADER =>
if st.cmd_reg = WRITE_ADD then
ext_out_data_cmd := st.addr_reg(7 downto 0);
else
ext_out_data_cmd := int_out.payload;
int_in.is_full_out <= '0';
end if;
when TX_BODY =>
if st.write_stage > 0 then
int_in.is_full_out <= '0';
ext_out_data_cmd := int_out.payload;
else
ext_out_data_cmd := (others => '0');
end if;
when TX_ACK =>
when RX_HEADER =>
if st.cmd_reg = READ_ADD then
ext_out_data_cmd := st.addr_reg(7 downto 0);
end if;
when RX_RESPONSE =>
when RX_BODY_NO_OUT =>
when RX_BODY =>
int_in.payload <= st.ext_in_reg.data;
int_in.write_enable_in <= '1';
when ADDR1 =>
ext_out_data_cmd := st.addr_reg(15 downto 8);
when ADDR2 =>
ext_out_data_cmd := st.addr_reg(23 downto 16);
when ADDR3 =>
ext_out_data_cmd := st.addr_reg(31 downto 24);
when ADDR4 =>
if st.cmd_reg = WRITE_ADD then
int_in.is_full_out <= '0';
ext_out_data_cmd := int_out.payload;
end if;
end case;
next_parity_out <= calc_parity(ext_out_data_cmd);
--- DEBUG GLOBAL BINDINGS ---
-- synthesis translate_off
test <= ext_out_data_cmd;
-- synthesis translate_on
end process comb_proc;
-- Process updating internal registers based on primary clock
seq_proc: process(ext_in_rec.clk, rst)
begin
if(rst = '1') then
st.ext_in_reg.data <= (others => '0');
st.ext_out_reg.data <= (others => '0');
st.ext_out_reg.clk <= '0';
st.ext_out_reg.parity <= '1';
st.curr_state <= IDLE;
st.write_stage <= 0;
st.read_stage <= 0;
st.cmd_reg <= NO_OP;
st.addr_reg <= (others => '0');
elsif(rising_edge(ext_in_rec.clk)) then
st.ext_in_reg.data <= ext_in_rec.data;
st.ext_in_reg.clk <= ext_in_rec.clk;
st.ext_in_reg.parity <= ext_in_rec.parity;
st.ext_out_reg.data <= ext_out_data_cmd;
st.ext_out_reg.clk <= not st.ext_out_reg.clk;
st.ext_out_reg.parity <= next_parity_out;
st.curr_state <= next_state;
case st.curr_state is
when IDLE =>
if cmd = WRITE or cmd = WRITE_ADD or
cmd = READ or cmd = READ_ADD then
st.addr_reg <= address;
st.cmd_reg <= cmd;
end if;
when TX_HEADER =>
st.write_stage <= 2**(cmd_size - 1) - 1;
when TX_BODY =>
if st.write_stage > 0 then
st.write_stage <= st.write_stage - 1;
end if;
when RX_HEADER =>
st.read_stage <= 2**(cmd_size - 1) - 1;
when RX_BODY =>
if st.read_stage > 0 then
st.read_stage <= st.read_stage - 1;
end if;
when others =>
end case;
end if;
end process seq_proc;
end architecture rtl;

View File

@ -0,0 +1,77 @@
[*]
[*] GTKWave Analyzer v3.3.104 (w)1999-2020 BSI
[*] Thu Feb 27 10:27:13 2025
[*]
[dumpfile] "/home/thesis1/repos/exjobb-public/src/wave/socbridge_driver_tb-tb.ghw"
[dumpfile_mtime] "Thu Feb 27 10:26:19 2025"
[dumpfile_size] 2417
[savefile] "/home/thesis1/repos/exjobb-public/src/socbridge_driver_tb.gtkw"
[timestart] 21800000
[size] 956 1033
[pos] -1 -1
*-24.456779 22000000 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[treeopen] top.
[treeopen] top.socbridge_driver_tb.
[treeopen] top.socbridge_driver_tb_pkg.
[treeopen] top.socbridge_driver_tb_pkg.g_st.
[sst_width] 273
[signals_width] 214
[sst_expanded] 1
[sst_vpaned_height] 324
@800200
-Outwards
-Internal
@28
top.socbridge_driver_tb.int_out.is_full_in
@22
#{top.socbridge_driver_tb.int_out.payload[7:0]} top.socbridge_driver_tb.int_out.payload[7] top.socbridge_driver_tb.int_out.payload[6] top.socbridge_driver_tb.int_out.payload[5] top.socbridge_driver_tb.int_out.payload[4] top.socbridge_driver_tb.int_out.payload[3] top.socbridge_driver_tb.int_out.payload[2] top.socbridge_driver_tb.int_out.payload[1] top.socbridge_driver_tb.int_out.payload[0]
@28
top.socbridge_driver_tb.int_out.write_enable_out
@1000200
-Internal
@800200
-External
@28
+{clk} top.socbridge_driver_tb.ext_out.control[1]
+{parity} top.socbridge_driver_tb.ext_out.control[0]
+{next_parity} top.socbridge_driver_tb_pkg.g_next_parity_out
@22
#{top.socbridge_driver_tb.ext_out.payload[7:0]} top.socbridge_driver_tb.ext_out.payload[7] top.socbridge_driver_tb.ext_out.payload[6] top.socbridge_driver_tb.ext_out.payload[5] top.socbridge_driver_tb.ext_out.payload[4] top.socbridge_driver_tb.ext_out.payload[3] top.socbridge_driver_tb.ext_out.payload[2] top.socbridge_driver_tb.ext_out.payload[1] top.socbridge_driver_tb.ext_out.payload[0]
+{next_payload[7:0]} #{top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[7:0]} top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[7] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[6] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[5] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[4] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[3] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[2] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[1] top.socbridge_driver_tb_pkg.g_ext_out_data_cmd[0]
@1000200
-External
-Outwards
@800200
-Inwards
-Internal
@28
top.socbridge_driver_tb.int_in.is_full_out
@22
#{top.socbridge_driver_tb.int_in.payload[7:0]} top.socbridge_driver_tb.int_in.payload[7] top.socbridge_driver_tb.int_in.payload[6] top.socbridge_driver_tb.int_in.payload[5] top.socbridge_driver_tb.int_in.payload[4] top.socbridge_driver_tb.int_in.payload[3] top.socbridge_driver_tb.int_in.payload[2] top.socbridge_driver_tb.int_in.payload[1] top.socbridge_driver_tb.int_in.payload[0]
@28
top.socbridge_driver_tb.int_in.write_enable_in
@1000200
-Internal
@800200
-External
@28
+{clk} top.socbridge_driver_tb.ext_in.control[1]
+{parity} top.socbridge_driver_tb.ext_in.control[0]
@22
#{top.socbridge_driver_tb.ext_in.payload[7:0]} top.socbridge_driver_tb.ext_in.payload[7] top.socbridge_driver_tb.ext_in.payload[6] top.socbridge_driver_tb.ext_in.payload[5] top.socbridge_driver_tb.ext_in.payload[4] top.socbridge_driver_tb.ext_in.payload[3] top.socbridge_driver_tb.ext_in.payload[2] top.socbridge_driver_tb.ext_in.payload[1] top.socbridge_driver_tb.ext_in.payload[0]
@1000200
-External
-Inwards
@800200
-Internal Signals
@420
top.socbridge_driver_tb_pkg.g_st.curr_state
+{next_state} top.socbridge_driver_tb_pkg.g_next_state
top.socbridge_driver_tb_pkg.g_curr_command
top.socbridge_driver_tb_pkg.g_curr_respoonse
@1000200
-Internal Signals
@420
top.socbridge_driver_tb.cmd
[pattern_trace] 1
[pattern_trace] 0

337
src/socbridge_driver_tb.vhd Normal file
View File

@ -0,0 +1,337 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
library work;
use work.io_types.all;
use work.socbridge_driver_tb_pkg.all;
entity socbridge_driver_tb is
end entity socbridge_driver_tb;
architecture tb of socbridge_driver_tb is
signal clk : std_logic := '0';
signal rst : std_logic;
signal cmd : command_t;
signal address : std_logic_vector(31 downto 0);
signal cmd_size : positive;
signal ext_in : ext_socbridge_in_t;
signal ext_out : ext_socbridge_out_t;
signal int_in : int_socbridge_in_t;
signal int_out : int_socbridge_out_t;
signal curr_word : std_logic_vector(ext_in.payload'length - 1 downto 0);
signal expected_out : std_logic_vector(ext_out.payload'length - 1 downto 0);
constant CLK_PERIOD : TIME := 10 ns;
constant SIMULATION_CYCLE_COUNT : INTEGER := 100;
procedure fail(error_msg : string) is
begin
wait for CLK_PERIOD;
report "Simulation ending due to: " & error_msg & ". Shutting down..." severity FAILURE;
end procedure;
procedure check_next_state(correct_state: state_t) is
begin
if(not (correct_state = G_next_state)) then
report "Next State is not what was expected, found " & state_t'image(G_next_state)
& " but expected " & state_t'image(correct_state) severity error;
fail("Next State");
end if;
end procedure;
procedure check_data_out(correct_data: std_logic_vector(ext_out.payload'length - 1 downto 0)) is
begin
if(not (correct_data = ext_out.payload)) then
report "Data out is not what was expected, found " & to_string(ext_out.payload)
& " but expected " & to_string(correct_data) severity error;
fail("Data out");
end if;
end procedure;
procedure check_parity(correct_data: std_logic_vector(ext_out.payload'length - 1 downto 0)) is
begin
if(not (calc_parity(correct_data) = calc_parity(ext_out.payload))) then
report "Parity out is not what was expected, found " & std_logic'image(calc_parity(ext_out.payload))
& " but expected " & std_logic'image(calc_parity(correct_data)) severity error;
fail("Parity out");
end if;
end procedure;
component socbridge_driver is
port(
clk : in std_logic;
rst : in std_logic;
cmd : in command_t;
address : in std_logic_vector(31 downto 0);
cmd_size: in positive;
ext_in : in ext_socbridge_in_t;
ext_out : out ext_socbridge_out_t;
int_in : out int_socbridge_in_t;
int_out : in int_socbridge_out_t
);
end component socbridge_driver;
begin
socbridge_driver_inst: entity work.socbridge_driver
port map(
clk => clk,
rst => rst,
cmd => cmd,
address => address,
cmd_size => cmd_size,
ext_in => ext_in,
ext_out => ext_out,
int_in => int_in,
int_out => int_out
);
ext_in.control(1) <= clk;
real_clk_proc: process
begin
for x in 0 to SIMULATION_CYCLE_COUNT*2 loop
clk <= not clk;
wait for CLK_PERIOD / 2;
end loop;
wait;
end process real_clk_proc;
verify_clk: process
variable last_clk : std_logic;
begin
wait for CLK_PERIOD / 2;
for x in 0 to SIMULATION_CYCLE_COUNT loop
if last_clk = ext_out.control(1) then
report "Secondary side clk not correct." severity error;
end if;
last_clk := ext_out.control(1);
wait for CLK_PERIOD;
end loop;
wait;
end process verify_clk;
verify_out_signals: process
variable curr_parity : std_logic;
begin
wait for CLK_PERIOD / 2;
for x in 0 to SIMULATION_CYCLE_COUNT loop
check_data_out(expected_out);
check_parity(expected_out);
wait for CLK_PERIOD;
end loop;
wait;
end process verify_out_signals;
verify_signals : process
variable nsv: boolean;
begin
expected_out <= "00000000";
wait for 3 * CLK_PERIOD;
wait for CLK_PERIOD / 3;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD /4;
check_next_state(TX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(WRITE) & get_size_bits_sim(2);
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000001";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000010";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait for CLK_PERIOD * 6;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD /4;
check_next_state(TX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(WRITE_ADD) & get_size_bits(2);
check_next_state(ADDR1);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(ADDR2);
wait for CLK_PERIOD;
expected_out <= x"A0";
check_next_state(ADDR3);
wait for CLK_PERIOD;
expected_out <= x"0F";
check_next_state(ADDR4);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000100";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00001000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD * 2;
wait for CLK_PERIOD /4;
check_next_state(RX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(READ) & get_size_bits(2);
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
wait for CLK_PERIOD / 4;
check_next_state(RX_BODY_NO_OUT);
wait for CLK_PERIOD * 3 /4;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait for CLK_PERIOD * 5;
wait for CLK_PERIOD /4;
check_next_state(RX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(READ_ADD) & get_size_bits(2);
check_next_state(ADDR1);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(ADDR2);
wait for CLK_PERIOD;
expected_out <= x"A0";
check_next_state(ADDR3);
wait for CLK_PERIOD;
expected_out <= x"0F";
check_next_state(ADDR4);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
wait for CLK_PERIOD / 4;
check_next_state(RX_BODY_NO_OUT);
wait for CLK_PERIOD * 3 /4;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait;
end process verify_signals;
command_stimulus: process
begin
cmd <= NO_OP;
cmd_size <= 2;
wait for 3*CLK_PERIOD;
wait for CLK_PERIOD / 2;
cmd <= WRITE;
wait for CLK_PERIOD;
cmd <= NO_OP;
wait for CLK_PERIOD * 10;
cmd <= WRITE_ADD;
address <= x"FA0FA0FA";
wait for CLK_PERIOD;
cmd <= NO_OP;
address <= (others => '0');
wait for CLK_PERIOD * 10;
cmd <= READ;
wait for CLK_PERIOD;
cmd <= NO_OP;
wait for CLK_PERIOD * 10;
cmd <= READ_ADD;
address <= x"FA0FA0FA";
wait for CLK_PERIOD;
cmd <= NO_OP;
address <= (others => '0');
wait;
end process command_stimulus;
external_stimulus_signal: process(curr_word)
begin
ext_in.payload <= curr_word;
ext_in.control(0) <= calc_parity(curr_word);
end process external_stimulus_signal;
external_stimulus: process
begin
rst <= '0';
wait for CLK_PERIOD / 1000;
rst <= '1';
curr_word <= "00000000";
wait for 999 * CLK_PERIOD / 1000;
wait for 2 * CLK_PERIOD;
rst <= '0';
wait for CLK_PERIOD / 2;
wait for 4* CLK_PERIOD;
curr_word <= "00001001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD * 14;
curr_word <= "00101001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD*5;
curr_word <= "01000001";
wait for CLK_PERIOD;
curr_word <= "10000000";
wait for CLK_PERIOD;
curr_word <= "01000000";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD*12;
curr_word <= "01100001";
wait for CLK_PERIOD;
curr_word <= "00100000";
wait for CLK_PERIOD;
curr_word <= "00010000";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait;
end process external_stimulus;
internal_stimulus: process
begin
int_out.is_full_in <= '0';
int_out.write_enable_out <= '0';
wait for 3 * CLK_PERIOD;
-- stimulus goes here
int_out.write_enable_out <= '1';
int_out.payload <= "00000001";
wait until rising_edge(clk) and int_in.is_full_out = '0';
wait until falling_edge(clk);
int_out.payload <= "00000010";
wait until rising_edge(clk) and int_in.is_full_out = '0';
wait until falling_edge(clk);
int_out.payload <= "00000100";
wait until rising_edge(clk) and int_in.is_full_out = '0';
wait until falling_edge(clk);
int_out.payload <= "00001000";
wait until rising_edge(clk) and int_in.is_full_out = '0';
wait until falling_edge(clk);
int_out.payload <= "00010000";
wait until int_in.is_full_out = '0';
wait for CLK_PERIOD/2;
wait until rising_edge(clk);
wait until rising_edge(clk);
int_out.payload <= "00100000";
wait until int_in.is_full_out = '0';
wait for CLK_PERIOD/2;
wait until rising_edge(clk);
wait until rising_edge(clk); --- ??? Why all these rising_edge checks?
wait;
end process internal_stimulus;
end architecture tb ;

View File

@ -0,0 +1,127 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.MATH_REAL.all;
library work;
use work.io_types.all;
package socbridge_driver_tb_pkg is
subtype command_size_t is integer range 1 to 128;
type command_t is
(NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR);
type response_t is
(NO_OP, WRITE_ACK, READ_RESPONSE);
type state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4,
TX_HEADER, TX_BODY, TX_ACK,
RX_HEADER, RX_RESPONSE, RX_BODY_NO_OUT, RX_BODY);
type ext_protocol_t is record
data : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
clk : std_logic;
parity : std_logic;
end record ext_protocol_t;
type state_rec_t is record
curr_state: state_t;
ext_in_reg, ext_out_reg : ext_protocol_t;
write_stage, read_stage : NATURAL;
cmd_reg : command_t;
addr_reg : std_logic_vector(31 downto 0);
end record state_rec_t;
impure function calc_parity(
d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0)
) return std_logic;
pure function create_io_type_out_from_ext_protocol(
input: ext_protocol_t
) return ext_socbridge_out_t;
function to_string ( a: std_logic_vector) return string;
pure function get_cmd_bits(command : command_t) return std_logic_vector;
pure function get_size_bits(size : command_size_t) return std_logic_vector;
pure function get_size_bits_sim(size : command_size_t) return std_logic_vector;
--- DEBUG GLOBAL SIGNALS ---
-- synthesis translate_off
signal G_next_parity_out : std_logic;
signal G_ext_in_rec : ext_protocol_t;
signal G_ext_out_data_cmd : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal G_next_state : state_t;
signal G_curr_command : command_t;
signal G_curr_command_bits : std_logic_vector(4 downto 0);
signal G_curr_response : response_t;
signal G_curr_response_bits : std_logic_vector(4 downto 0);
signal G_st : state_rec_t;
-- synthesis translate_on
end package socbridge_driver_tb_pkg;
package body socbridge_driver_tb_pkg is
function to_string ( a: std_logic_vector) return string is
variable b : string (1 to a'length) := (others => NUL);
variable stri : integer := 1;
begin
for i in a'range loop
b(stri) := std_logic'image(a((i)))(2);
stri := stri+1;
end loop;
return b;
end function;
impure function calc_parity(
d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0)
) return std_logic is
variable parity : std_logic;
begin
parity := d(0);
for x in integer'(1) to d'length - 1 loop
parity := parity xor d(x);
end loop;
return not parity;
end function;
pure function create_io_type_out_from_ext_protocol(
input : ext_protocol_t
) return ext_socbridge_out_t is
variable val : ext_socbridge_out_t;
begin
val.payload:= input.data;
val.control(1) := input.clk;
val.control(0) := input.parity;
return val;
end function;
pure function get_cmd_bits(command : command_t)
return std_logic_vector is
variable val : std_logic_vector(4 downto 0);
begin
with command select
val := "00000" when NO_OP,
"10000" when WRITE_ADD,
"10100" when WRITE,
"11000" when READ_ADD,
"11100" when READ,
"01001" when P_ERR,
"11111" when others;
return val;
end function;
pure function get_size_bits(size: command_size_t)
return std_logic_vector is
variable val : std_logic_vector(2 downto 0);
begin
val := std_logic_vector(TO_UNSIGNED(size - 1, 3));
return val;
end function;
pure function get_size_bits_sim(size: command_size_t)
return std_logic_vector is
variable pow : integer;
variable val : std_logic_vector(2 downto 0);
begin
pow := integer(CEIL(sqrt(Real(size))));
val := std_logic_vector(TO_UNSIGNED(size - 1, 3));
return val;
end function;
end package body socbridge_driver_tb_pkg;

32
topology.md Normal file
View File

@ -0,0 +1,32 @@
+------------------------------------------------------+ +---------------
| | |
| +-----------------+ | |
*From host* | | Instruction | G A N I M E D E | |
--------------------------->| queue + | | | IP-CORE
| | scheduler | | |
| +-----------------+ | |
| *DMA control*| | |
| | | |
+--------+ | +--------+ | +-----------------+ | |
| Inter- | data + | | Driver |<---+ | Per interface | | data + |
| face 1 |<=================>| 1 |<===|===>| optimizations |<=============================>|
| | control | | | | | (generic) | | control |
+--------+ | +--------+ | +-----------------+ | |
| | | |
+--------+ | +--------+ | +-----------------+ | |
| Inter- | data + | | Driver |<---+ | Per interface | | data + |
| face 2 |<=================>| 2 |<===|===>| optimizations |<=============================>|
| | control | | | | | (generic) | | control |
+--------+ | +--------+ | +-----------------+ | |
... ... ... ... ... ... ... ... ... ...|... . ... ... . ... ...... . ... ... . ... . |
+--------+ | +--------+ | +-----------------+ | |
| Inter- | data + | | Driver |<---+ | Per interface | | data + |
| face n |<=================>| n |<=======>| optimizations |<=============================>|
| | control | | | | (generic) | | control |
+--------+ | +--------+ +-----------------+ | |
| | |
+------------------------------------------------------+ +---------------
This wont be the first version, but the finished version might look something like this.