Compare commits

...

15 Commits
main ... v1.0.0

Author SHA1 Message Date
2b85765e1f made ganimede synthesizable 2025-04-07 12:21:20 +02:00
31f0c45f2b socbridge fully works with existing socbridge 2025-04-07 11:24:51 +02:00
abbe417dd3 added most functionality for answering to commands from external socbridge 2025-04-04 17:51:46 +02:00
3cf9a13019 Updated driver with split FSMs, DMA from socbridge works 2025-04-04 16:48:26 +02:00
842d8b2305 fixed imports for socbridge 2025-04-04 16:47:53 +02:00
0747cbfdc9 made some progress on reformatting socbridge driver 2025-04-03 17:13:01 +02:00
ffa2ee768c added grlib support (socbridge needs to be recompiled) 2025-04-03 16:14:26 +02:00
c6c5d2d7fc RX FSM almost done 2025-04-03 12:23:51 +02:00
b3a2c4e34a Rough outline of new FSMs probably done. All remaining work is hopefully covered by TODOs 2025-04-02 17:26:51 +02:00
421ed1c006 Continued work on updating FSMs in SoCBridge-driver 2025-04-02 16:13:00 +02:00
b09ab5f1ad Started reworking socbridge driver 2025-04-01 17:04:29 +02:00
d739518596 Added synthesis artifact folder to gitignore 2025-03-31 11:12:59 +02:00
678afc4bd9 testbench might work but ghdl broke so could not test 2025-03-17 12:16:20 +01:00
88dcd19a47 Refactored controller types to support multiple drivers. Also started ganimede tb 2025-03-14 17:01:15 +01:00
10d519301e Started working on implementing units in top level 2025-03-13 17:20:28 +01:00
16 changed files with 956 additions and 711 deletions

2
.gitignore vendored
View File

@ -1,2 +1,4 @@
**/wave **/wave
**/work **/work
**/syn
scripts/ghdl

View File

@ -1,4 +0,0 @@
#!/bin/bash
VARS="$@"
COMMAND="ghdl $VARS"
docker run -it -v .:/src -w /src ghdl/ghdl:5.0.0-dev-gcc-ubuntu-24.04 bash -c "$COMMAND"

View File

@ -1,6 +0,0 @@
#!/bin/bash
source /gsl/cad/modules/init/bash
module add /gsl/cad/modules/modulefiles/nanoxplore/nxdesignsuite/24.3.0.0
nxpython $@

1
src/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
**/grlib*/**

View File

@ -3,8 +3,8 @@ use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all; use IEEE.NUMERIC_STD.all;
library ganimede; library ganimede;
use ganimede.io_types.all; use ganimede.io_types.all;
library socbridge; library gan_socbridge;
use socbridge.socbridge_driver_tb_pkg.all; use gan_socbridge.socbridge_driver_pkg.all;
library controller; library controller;
entity control_socbridge_tb is entity control_socbridge_tb is
@ -23,8 +23,8 @@ architecture tb of control_socbridge_tb is
control => (others => '0') control => (others => '0')
); );
signal socbridge_driver_to_ext : socbridge_driver_to_ext_t; signal socbridge_driver_to_ext : socbridge_driver_to_ext_t;
signal socbridge_driver_to_buffer : socbridge_driver_to_buffer_t; signal socbridge_driver_to_ip : socbridge_driver_to_ip_t;
signal buffer_to_socbridge_driver : buffer_to_socbridge_driver_t := ( signal ip_to_socbridge_driver : ip_to_socbridge_driver_t := (
payload => (others => '0'), payload => (others => '0'),
write_enable_out => '0', write_enable_out => '0',
is_full_in => '0' is_full_in => '0'
@ -35,9 +35,9 @@ architecture tb of control_socbridge_tb is
seq_mem_access_count => 0, seq_mem_access_count => 0,
cmd => "00" cmd => "00"
); );
signal socbridge_driver_to_controller: socbridge_driver_to_controller_t := (is_active => '0'); signal drivers_to_controller: drivers_to_controller_t := (socbridge => (is_active => '0'));
signal controller_to_cpu: controller_to_cpu_t; signal controller_to_cpu: controller_to_cpu_t;
signal controller_to_socbridge_driver: controller_to_socbridge_driver_t; signal controller_to_drivers: controller_to_drivers_t;
signal curr_word : std_logic_vector(ext_to_socbridge_driver.payload'length - 1 downto 0); signal curr_word : std_logic_vector(ext_to_socbridge_driver.payload'length - 1 downto 0);
signal expected_out : std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0); signal expected_out : std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0);
@ -80,12 +80,12 @@ begin
port map( port map(
clk => clk, clk => clk,
rst => rst, rst => rst,
controller_to_socbridge_driver => controller_to_socbridge_driver, controller_to_socbridge_driver => controller_to_drivers.socbridge,
socbridge_driver_to_controller => socbridge_driver_to_controller, socbridge_driver_to_controller => drivers_to_controller.socbridge,
ext_to_socbridge_driver => ext_to_socbridge_driver, ext_to_socbridge_driver => ext_to_socbridge_driver,
socbridge_driver_to_ext => socbridge_driver_to_ext, socbridge_driver_to_ext => socbridge_driver_to_ext,
buffer_to_socbridge_driver => buffer_to_socbridge_driver, ip_to_socbridge_driver => ip_to_socbridge_driver,
socbridge_driver_to_buffer => socbridge_driver_to_buffer socbridge_driver_to_ip => socbridge_driver_to_ip
); );
controller_unit_inst: entity controller.control_unit controller_unit_inst: entity controller.control_unit
@ -94,8 +94,8 @@ begin
rst => rst, rst => rst,
cpu_to_controller => cpu_to_controller, cpu_to_controller => cpu_to_controller,
controller_to_cpu => controller_to_cpu, controller_to_cpu => controller_to_cpu,
socbridge_driver_to_controller => socbridge_driver_to_controller, drivers_to_controller => drivers_to_controller,
controller_to_socbridge_driver => controller_to_socbridge_driver controller_to_drivers => controller_to_drivers
); );
ext_to_socbridge_driver.control(1) <= clk; ext_to_socbridge_driver.control(1) <= clk;
@ -121,21 +121,21 @@ begin
rst <= '0'; rst <= '0';
cpu_to_controller.address <= x"FA0FA0FA"; cpu_to_controller.address <= x"FA0FA0FA";
cpu_to_controller.cmd <= "01"; cpu_to_controller.cmd <= "01";
wait until socbridge_driver_to_controller.is_active = '1'; wait until drivers_to_controller.socbridge.is_active = '1';
report "Task received in driver, awaiting completion..."; report "Task received in driver, awaiting completion...";
cpu_to_controller.address <= (others => '0'); cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00"; cpu_to_controller.cmd <= "00";
wait until socbridge_driver_to_controller.is_active = '0'; wait until drivers_to_controller.socbridge.is_active = '0';
wait for CLK_PERIOD; wait for CLK_PERIOD;
report "Task completed in driver, sending next task..."; report "Task completed in driver, sending next task...";
cpu_to_controller.address <= x"FA0FA0FA"; cpu_to_controller.address <= x"FA0FA0FA";
cpu_to_controller.cmd <= "10"; cpu_to_controller.cmd <= "10";
wait for CLK_PERIOD; wait for CLK_PERIOD;
wait until socbridge_driver_to_controller.is_active = '1'; wait until drivers_to_controller.socbridge.is_active = '1';
report "Task received in driver, awaiting completion..."; report "Task received in driver, awaiting completion...";
cpu_to_controller.address <= (others => '0'); cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00"; cpu_to_controller.cmd <= "00";
wait until socbridge_driver_to_controller.is_active = '0'; wait until drivers_to_controller.socbridge.is_active = '0';
wait for CLK_PERIOD; wait for CLK_PERIOD;
report "Task completed in driver, ending simulation stimulus"; report "Task completed in driver, ending simulation stimulus";
cpu_to_controller.address <= (others => '0'); cpu_to_controller.address <= (others => '0');
@ -197,19 +197,19 @@ begin
internal_stimulus: process internal_stimulus: process
variable input : positive := 1; variable input : positive := 1;
begin begin
buffer_to_socbridge_driver.is_full_in <= '0'; ip_to_socbridge_driver.is_full_in <= '0';
buffer_to_socbridge_driver.write_enable_out <= '0'; ip_to_socbridge_driver.write_enable_out <= '0';
wait for 3 * CLK_PERIOD; wait for 3 * CLK_PERIOD;
-- stimulus goes here -- stimulus goes here
buffer_to_socbridge_driver.write_enable_out <= '1'; ip_to_socbridge_driver.write_enable_out <= '1';
buffer_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, buffer_to_socbridge_driver.payload'length)); ip_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, ip_to_socbridge_driver.payload'length));
input := input + 1 mod 256; input := input + 1 mod 256;
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0'; wait until rising_edge(clk) and socbridge_driver_to_ip.is_full_out = '0';
wait until falling_edge(clk); wait until falling_edge(clk);
for x in 0 to 1000 loop for x in 0 to 1000 loop
buffer_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, buffer_to_socbridge_driver.payload'length)); ip_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, ip_to_socbridge_driver.payload'length));
input := input + 1 mod 256; input := input + 1 mod 256;
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0'; wait until rising_edge(clk) and socbridge_driver_to_ip.is_full_out = '0';
wait until falling_edge(clk); wait until falling_edge(clk);
end loop; end loop;
wait; wait;

View File

@ -10,8 +10,8 @@ entity control_unit is
clk, rst : in std_logic; clk, rst : in std_logic;
cpu_to_controller : in cpu_to_controller_t; cpu_to_controller : in cpu_to_controller_t;
controller_to_cpu : out controller_to_cpu_t; controller_to_cpu : out controller_to_cpu_t;
socbridge_driver_to_controller : in socbridge_driver_to_controller_t; drivers_to_controller : in drivers_to_controller_t;
controller_to_socbridge_driver : out controller_to_socbridge_driver_t controller_to_drivers : out controller_to_drivers_t
); );
end entity control_unit; end entity control_unit;
@ -31,17 +31,17 @@ architecture behave of control_unit is
begin begin
comb_proc: process(cpu_to_controller, socbridge_driver_to_controller, state) comb_proc: process(cpu_to_controller, drivers_to_controller, state)
begin begin
ored := '0'; ored := '0';
ready_reduction: for i in 0 to number_of_drivers - 1 loop ready_reduction: for i in 0 to number_of_drivers - 1 loop
ored := ored or socbridge_driver_to_controller.is_active; ored := ored or drivers_to_controller.socbridge.is_active;
end loop ready_reduction; end loop ready_reduction;
controller_to_socbridge_driver.request <= state.curr_driver; controller_to_drivers.socbridge.request <= state.curr_driver;
controller_to_socbridge_driver.address <= state.address; controller_to_drivers.socbridge.address <= state.address;
controller_to_socbridge_driver.seq_mem_access_count <= state.seq_mem_access_count; controller_to_drivers.socbridge.seq_mem_access_count <= state.seq_mem_access_count;
controller_to_cpu.ready <= state.ready; controller_to_cpu.ready <= state.ready;
controller_to_socbridge_driver.instruction <= state.instruction; controller_to_drivers.socbridge.instruction <= state.instruction;
end process comb_proc; end process comb_proc;
sync_proc: process(clk, state) sync_proc: process(clk, state)

View File

@ -19,9 +19,9 @@ architecture tb of control_unit_tb is
(others => '0'), (others => '0'),
0, 0,
"00"); "00");
signal socbridge_driver_to_controller: socbridge_driver_to_controller_t := (is_active => '0'); signal drivers_to_controller: drivers_to_controller_t := (socbridge => (is_active => '0'));
signal controller_to_cpu: controller_to_cpu_t; signal controller_to_cpu: controller_to_cpu_t;
signal controller_to_socbridge_driver: controller_to_socbridge_driver_t; signal controller_to_drivers: controller_to_drivers_t;
signal current_driver : std_logic_vector(0 downto 0) := "0"; signal current_driver : std_logic_vector(0 downto 0) := "0";
shared variable word_counter: natural := 0; shared variable word_counter: natural := 0;
@ -42,8 +42,8 @@ begin
rst => reset, rst => reset,
cpu_to_controller => cpu_to_controller, cpu_to_controller => cpu_to_controller,
controller_to_cpu => controller_to_cpu, controller_to_cpu => controller_to_cpu,
socbridge_driver_to_controller => socbridge_driver_to_controller, drivers_to_controller => drivers_to_controller,
controller_to_socbridge_driver => controller_to_socbridge_driver controller_to_drivers => controller_to_drivers
); );
stimulus_proc: process stimulus_proc: process
@ -51,7 +51,7 @@ begin
wait for cycle; wait for cycle;
cpu_to_controller.driver_id <= "1"; cpu_to_controller.driver_id <= "1";
socbridge_driver_to_controller.is_active <= '0'; drivers_to_controller.socbridge.is_active <= '0';
cpu_to_controller.address <= x"F0F0F0F0"; cpu_to_controller.address <= x"F0F0F0F0";
cpu_to_controller.seq_mem_access_count <= 3; cpu_to_controller.seq_mem_access_count <= 3;
cpu_to_controller.cmd <= "01"; cpu_to_controller.cmd <= "01";
@ -65,7 +65,7 @@ begin
report "words remaining are " & integer'image(i); report "words remaining are " & integer'image(i);
end loop for_loop; end loop for_loop;
socbridge_driver_to_controller.is_active <= '0'; drivers_to_controller.socbridge.is_active <= '0';
report "Stim process done"; report "Stim process done";
wait; wait;
end process stimulus_proc; end process stimulus_proc;
@ -76,9 +76,9 @@ begin
wait for cycle; wait for cycle;
wait for cycle; wait for cycle;
assert controller_to_socbridge_driver.request = '1' report "Incorrect driver_id from control_unit" severity error; assert controller_to_drivers.socbridge.request = '1' report "Incorrect driver_id from control_unit" severity error;
assert controller_to_socbridge_driver.address = x"F0F0F0F0" report "Incorrect address from control_unit" severity error; assert controller_to_drivers.socbridge.address = x"F0F0F0F0" report "Incorrect address from control_unit" severity error;
assert controller_to_socbridge_driver.instruction = WRITE report "Incorrect memory op from control_unit" severity error; assert controller_to_drivers.socbridge.instruction = WRITE report "Incorrect memory op from control_unit" severity error;
wait for 5 * cycle; wait for 5 * cycle;
reset <= '1'; reset <= '1';

1
src/ganimede/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
ganimede

View File

@ -1,24 +1,28 @@
library IEEE; library IEEE;
use IEEE.std_logic_1164.all; use IEEE.std_logic_1164.all;
library work; library ganimede;
use work.io_types.all; use ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library controller;
entity ganimede is entity ganimede_toplevel is
port ( port (
clk : in std_logic; clk : in std_logic;
reset : in std_logic; rst : in std_logic;
ext_interface_in : in ext_interface_in_t; cpu_to_ganimede : in cpu_to_controller_t;
ext_interface_out : out ext_interface_out_t; ganimede_to_cpu : out controller_to_cpu_t;
int_interface_in : in int_interface_in_t; ext_to_ganimede : in ext_to_ganimede_t;
int_interface_out : out int_interface_out_t ganimede_to_ext : out ganimede_to_ext_t;
ip_to_ganimede : in ip_to_ganimede_t;
ganimede_to_ip : out ganimede_to_ip_t
); );
end entity ganimede; end entity ganimede_toplevel;
architecture rtl of ganimede is architecture rtl of ganimede_toplevel is
--- SIGNAL DECLERATIONS --- --- SIGNAL DECLERATIONS ---
signal gan_int_interface_in : int_interface_in_t; signal drivers_to_controller : drivers_to_controller_t;
signal gan_int_interface_out : int_interface_out_t; signal controller_to_drivers : controller_to_drivers_t;
signal gan_ext_interface_in : ext_interface_in_t;
signal gan_ext_interface_out : ext_interface_out_t;
--signal gan_socbridge_WE_in : std_logic; --signal gan_socbridge_WE_in : std_logic;
--signal gan_socbridge_WE_out : std_logic; --signal gan_socbridge_WE_out : std_logic;
@ -38,34 +42,30 @@ architecture rtl of ganimede is
-- data_out : out std_logic_vector(WIDTH - 1 downto 0) -- data_out : out std_logic_vector(WIDTH - 1 downto 0)
-- ); -- );
--end component; --end component;
component socbridge_driver is
port(
clk : in std_logic;
reset : in std_logic;
ext_in : in ext_to_socbridge_driver_t;
ext_out : out socbridge_driver_to_ext_t;
int_in : out buffer_to_socbridge_driver_t;
int_out : in socbridge_driver_to_buffer_t
);
end component;
begin begin
--- CONNECT EXTERNAL SIGNALS TO INTERNAL CONNECTIONS --- --- CONNECT EXTERNAL SIGNALS TO INTERNAL CONNECTIONS ---
gan_int_interface_in <= int_interface_in;
int_interface_out <= gan_int_interface_out;
gan_ext_interface_in <= ext_interface_in;
ext_interface_out <= gan_ext_interface_out;
--- DRIVER INSTANTIATION --- --- DRIVER INSTANTIATION ---
socbridge_driver_inst: socbridge_driver socbridge_inst: entity gan_socbridge.socbridge_driver
port map( port map(
clk => clk, clk => clk,
reset => reset, rst => rst,
ext_in => gan_ext_interface_in.socbridge, controller_to_socbridge_driver => controller_to_drivers.socbridge,
ext_out => gan_ext_interface_out.socbridge, socbridge_driver_to_controller => drivers_to_controller.socbridge,
int_in => gan_int_interface_in.socbridge, ext_to_socbridge_driver => ext_to_ganimede.socbridge,
int_out => gan_int_interface_out.socbridge socbridge_driver_to_ext => ganimede_to_ext.socbridge,
ip_to_socbridge_driver => ip_to_ganimede.socbridge,
socbridge_driver_to_ip => ganimede_to_ip.socbridge
);
controller_unit_inst: entity controller.control_unit
port map(
clk => clk,
rst => rst,
cpu_to_controller => cpu_to_ganimede,
controller_to_cpu => ganimede_to_cpu,
drivers_to_controller => drivers_to_controller,
controller_to_drivers => controller_to_drivers
); );
--- LATER WE ADD OPTIMIZATIONS HERE --- --- LATER WE ADD OPTIMIZATIONS HERE ---

View File

@ -0,0 +1,215 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library ganimede;
use ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library controller;
entity ganimede_tb is
end entity ganimede_tb;
architecture tb of ganimede_tb is
constant CLK_PERIOD : Time := 10 ns;
constant SIMULATION_CYCLE_COUNT : integer := 2000;
signal clk, rst : std_logic := '0';
signal controller_to_socbridge_driver_cmd : command_t;
signal controller_to_socbridge_driver_address : std_logic_vector(31 downto 0);
signal cmd_size : positive;
signal ext_to_ganimede : ext_to_ganimede_t := (socbridge => (
payload => (others => '0'),
control => (others => '0')
));
signal ganimede_to_ext : ganimede_to_ext_t;
signal ganimede_to_ip : ganimede_to_ip_t;
signal ganimede_to_cpu : controller_to_cpu_t;
signal cpu_to_ganimede : cpu_to_controller_t := (
driver_id => (others => '0'),
address => (others => '0'),
seq_mem_access_count => 0,
cmd => (others => '0')
);
signal ip_to_ganimede : ip_to_ganimede_t := (socbridge => (
payload => (others => '0'),
write_enable_out => '0',
is_full_in => '0'
));
signal cpu_to_controller: cpu_to_controller_t := (
driver_id => (others => '0'),
address => (others => '0'),
seq_mem_access_count => 0,
cmd => "00"
);
signal drivers_to_controller: drivers_to_controller_t := (socbridge => (is_active => '0'));
signal controller_to_cpu: controller_to_cpu_t;
signal controller_to_drivers: controller_to_drivers_t;
signal curr_word : std_logic_vector(ext_to_ganimede.socbridge.payload'length - 1 downto 0);
signal expected_out : std_logic_vector(ganimede_to_ext.socbridge.payload'length - 1 downto 0);
procedure fail(error_msg : string) is
begin
wait for CLK_PERIOD;
report "Simulation ending due to: " & error_msg & ". Shutting down..." severity FAILURE;
end procedure;
procedure check_next_state(correct_state: state_t) is
begin
if(not (correct_state = G_next_state)) then
report "Next State is not what was expected, found " & state_t'image(G_next_state)
& " but expected " & state_t'image(correct_state) severity error;
fail("Next State");
end if;
end procedure;
procedure check_data_out(correct_data: std_logic_vector(ganimede_to_ext.socbridge.payload'length - 1 downto 0)) is
begin
if(not (correct_data = ganimede_to_ext.socbridge.payload)) then
report "Data out is not what was expected, found " & to_string(ganimede_to_ext.socbridge.payload)
& " but expected " & to_string(correct_data) severity error;
fail("Data out");
end if;
end procedure;
procedure check_parity(correct_data: std_logic_vector(ganimede_to_ext.socbridge.payload'length - 1 downto 0)) is
begin
if(not (calc_parity(correct_data) = calc_parity(ganimede_to_ext.socbridge.payload))) then
report "Parity out is not what was expected, found " & std_logic'image(calc_parity(ganimede_to_ext.socbridge.payload))
& " but expected " & std_logic'image(calc_parity(correct_data)) severity error;
fail("Parity out");
end if;
end procedure;
begin
ganimede_inst: entity ganimede.ganimede_toplevel
port map(
clk => clk,
rst => rst,
cpu_to_ganimede => cpu_to_ganimede,
ganimede_to_cpu => ganimede_to_cpu,
ext_to_ganimede => ext_to_ganimede,
ganimede_to_ext => ganimede_to_ext,
ip_to_ganimede => ip_to_ganimede,
ganimede_to_ip => ganimede_to_ip
);
ext_to_ganimede.socbridge.control(1) <= clk;
controller_clock_proc: process
begin
for i in 0 to SIMULATION_CYCLE_COUNT - 1 loop
wait for CLK_PERIOD / 2;
clk <= not clk;
end loop;
wait;
end process controller_clock_proc;
stimulus_proc: process
begin
report "Starting Simulation Stimulus!";
rst <= '1';
cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00";
cpu_to_controller.driver_id <= "1";
cpu_to_controller.seq_mem_access_count <= 256;
wait for 3 * CLK_PERIOD;
report "Reset grace period ended, starting stimulus...";
rst <= '0';
cpu_to_controller.address <= x"FA0FA0FA";
cpu_to_controller.cmd <= "01";
wait until drivers_to_controller.socbridge.is_active = '1';
report "Task received in driver, awaiting completion...";
cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00";
wait until drivers_to_controller.socbridge.is_active = '0';
wait for CLK_PERIOD;
report "Task completed in driver, sending next task...";
cpu_to_controller.address <= x"FA0FA0FA";
cpu_to_controller.cmd <= "10";
wait for CLK_PERIOD;
wait until drivers_to_controller.socbridge.is_active = '1';
report "Task received in driver, awaiting completion...";
cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00";
wait until drivers_to_controller.socbridge.is_active = '0';
wait for CLK_PERIOD;
report "Task completed in driver, ending simulation stimulus";
cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00";
cpu_to_controller.driver_id <= "0";
cpu_to_controller.seq_mem_access_count <= 0;
wait;
end process stimulus_proc;
external_stimulus_signal: process(curr_word)
begin
ext_to_ganimede.socbridge.payload <= curr_word;
ext_to_ganimede.socbridge.control(0) <= calc_parity(curr_word);
end process external_stimulus_signal;
external_stimulus: process
variable input : positive := 1;
begin
wait for CLK_PERIOD / 1000;
curr_word <= "00000000";
wait for 999 * CLK_PERIOD / 1000;
wait for 2 * CLK_PERIOD;
wait for CLK_PERIOD / 2;
wait for 10* CLK_PERIOD;
curr_word <= "00001001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD * 140;
curr_word <= "00101001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD * 140;
curr_word <= "00101001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD * 20;
curr_word <= "01100111";
wait for CLK_PERIOD;
for x in 0 to 127 loop
curr_word <= std_logic_vector(to_unsigned(input, 8));
input := input + 1 mod 256;
wait for CLK_PERIOD;
end loop;
curr_word <= "00000000";
wait for CLK_PERIOD * 140;
wait for CLK_PERIOD * 20;
curr_word <= "01100111";
wait for CLK_PERIOD;
for x in 0 to 127 loop
curr_word <= std_logic_vector(to_unsigned(input, 8));
input := input + 1 mod 256;
wait for CLK_PERIOD;
end loop;
wait;
end process external_stimulus;
internal_stimulus: process
variable input : positive := 1;
begin
ip_to_ganimede.socbridge.is_full_in <= '0';
ip_to_ganimede.socbridge.write_enable_out <= '0';
wait for 3 * CLK_PERIOD;
-- stimulus goes here
ip_to_ganimede.socbridge.write_enable_out <= '1';
ip_to_ganimede.socbridge.payload <= std_logic_vector(to_unsigned(input, ip_to_ganimede.socbridge.payload'length));
input := input + 1 mod 256;
wait until rising_edge(clk) and ganimede_to_ip.socbridge.is_full_out = '0';
wait until falling_edge(clk);
for x in 0 to 1000 loop
ip_to_ganimede.socbridge.payload <= std_logic_vector(to_unsigned(input, ip_to_ganimede.socbridge.payload'length));
input := input + 1 mod 256;
wait until rising_edge(clk) and ganimede_to_ip.socbridge.is_full_out = '0';
wait until falling_edge(clk);
end loop;
wait;
end process internal_stimulus;
end architecture tb;

View File

@ -5,64 +5,52 @@ use IEEE.MATH_REAL.all;
package io_types is package io_types is
--- CONSTANTS --- --- CONSTANTS ---
constant number_of_drivers: natural := 1; constant number_of_drivers : natural := 1;
constant address_width: natural := 32; constant address_width : natural := 32;
constant seq_vector_length: natural := 8; constant inst_word_width : natural := 2;
constant inst_word_width: natural := 2;
--- STANDARD TYPES --- --- STANDARD TYPES ---
type instruction_command_t is (NO_OP, READ, WRITE); type instruction_command_t is (NO_OP, READ, WRITE);
type ext_protocol_def_t is record type ext_protocol_def_t is record
name: string (1 to 20); name: string (1 to 20);
payload_width: natural; payload_width : natural;
control_width_in, control_width_out: natural; control_width_in, control_width_out : natural;
end record ext_protocol_def_t; end record ext_protocol_def_t;
type interface_inst_t is record type interface_inst_t is record
socbridge: ext_protocol_def_t; socbridge : ext_protocol_def_t;
end record interface_inst_t; end record interface_inst_t;
--- CONTROL UNIT --- --- CONTROL UNIT ---
type cpu_to_controller_t is record type cpu_to_controller_t is record
driver_id: std_logic_vector(number_of_drivers - 1 downto 0); driver_id : std_logic_vector(number_of_drivers - 1 downto 0);
address: std_logic_vector(address_width - 1 downto 0); address : std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: integer; seq_mem_access_count : integer;
cmd: std_logic_vector(1 downto 0); cmd : std_logic_vector(1 downto 0);
end record cpu_to_controller_t; end record cpu_to_controller_t;
type controller_to_cpu_t is record type controller_to_cpu_t is record
ready: std_logic; ready : std_logic;
end record controller_to_cpu_t; end record controller_to_cpu_t;
--type controller_to_socbridge_driver_t is record
-- driver_id: std_logic_vector(number_of_drivers - 1 downto 0);
-- address: std_logic_vector(address_width - 1 downto 0);
-- seq_mem_access_count: integer;
-- instruction: instruction_command_t;
--end record controller_to_socbridge_driver_t;
--type socbridge_driver_to_controller_t is record
-- active_driver: std_logic_vector(number_of_drivers - 1 downto 0);
--end record socbridge_driver_to_controller_t;
type socbridge_driver_to_controller_t is record
is_active : std_logic;
end record socbridge_driver_to_controller_t;
type controller_to_socbridge_driver_t is record
request: std_logic;
address: std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: integer;
instruction: instruction_command_t;
end record controller_to_socbridge_driver_t;
--- PROTOCOL INFORMATION --- --- PROTOCOL INFORMATION ---
constant interface_inst : interface_inst_t := ( constant interface_inst : interface_inst_t := (
socbridge => ("SoCBridge ", 8, 2, 2) socbridge => ("SoCBridge ", 8, 2, 2)
); );
--- AUTOGENERATED TYPES --- --- AUTOGENERATED TYPES ---
type socbridge_driver_to_controller_t is record
is_active : std_logic;
end record socbridge_driver_to_controller_t;
type controller_to_socbridge_driver_t is record
request : std_logic;
address : std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count : integer;
instruction : instruction_command_t;
end record controller_to_socbridge_driver_t;
type ext_to_socbridge_driver_t is record type ext_to_socbridge_driver_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0); payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0); control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0);
@ -73,30 +61,38 @@ package io_types is
control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0); control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0);
end record socbridge_driver_to_ext_t; end record socbridge_driver_to_ext_t;
type socbridge_driver_to_buffer_t is record type socbridge_driver_to_ip_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0); payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
write_enable_in, is_full_out : std_logic; write_enable_in, is_full_out : std_logic;
end record socbridge_driver_to_buffer_t; end record socbridge_driver_to_ip_t;
type buffer_to_socbridge_driver_t is record type ip_to_socbridge_driver_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0); payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
write_enable_out, is_full_in : std_logic; write_enable_out, is_full_in : std_logic;
end record buffer_to_socbridge_driver_t; end record ip_to_socbridge_driver_t;
type ext_interface_in_t is record type controller_to_drivers_t is record
socbridge : controller_to_socbridge_driver_t;
end record controller_to_drivers_t;
type drivers_to_controller_t is record
socbridge : socbridge_driver_to_controller_t;
end record drivers_to_controller_t;
type ext_to_ganimede_t is record
socbridge : ext_to_socbridge_driver_t; socbridge : ext_to_socbridge_driver_t;
end record ext_interface_in_t; end record ext_to_ganimede_t;
type ext_interface_out_t is record type ganimede_to_ext_t is record
socbridge : socbridge_driver_to_ext_t; socbridge : socbridge_driver_to_ext_t;
end record ext_interface_out_t; end record ganimede_to_ext_t;
type int_interface_out_t is record type ganimede_to_ip_t is record
socbridge : socbridge_driver_to_buffer_t; socbridge : socbridge_driver_to_ip_t;
end record int_interface_out_t; end record ganimede_to_ip_t;
type int_interface_in_t is record type ip_to_ganimede_t is record
socbridge : buffer_to_socbridge_driver_t; socbridge : ip_to_socbridge_driver_t;
end record int_interface_in_t; end record ip_to_ganimede_t;
end package io_types; end package io_types;

185
src/gantry.toml Normal file
View File

@ -0,0 +1,185 @@
title = "ganimede"
createdAt = "2025-03-14"
maintainer = ""
email = ""
version = "0.0.1"
[libraries.ganimede]
vhdl-version = "93c"
path = "ganimede"
[libraries.controller]
vhdl-version = "93c"
path = "controller"
[libraries.testbenches]
vhdl-version = "93c"
path = "control_socbridge_merge"
[libraries.gaisler]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/gaisler"
[libraries.grlib]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/grlib"
[libraries.gr_socbridge_tb]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/verification/socbridge"
[libraries.techmap]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/gencomp"
[libraries.alltech]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/alltech"
[libraries.altera_mf]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/altera_mf"
[libraries.apa]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/apa"
[libraries.artisan]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/artisan"
[libraries.atc18]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/atc18"
[libraries.axcelerator]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/axcelerator"
[libraries.cust1]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/cust1"
[libraries.cycloneiii]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/cycloneiii"
[libraries.dware]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/dware"
[libraries.ec]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/ec"
[libraries.eclipsee]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/eclipsee"
[libraries.fusion]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/fusion"
[libraries.inferred]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/inferred"
[libraries.grdware]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/grdware"
[libraries.maps]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/maps"
[libraries.nx]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/nx"
[libraries.polarfire]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/polarfire"
[libraries.nexus]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/nexus"
[libraries.proasic3]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/proasic3"
[libraries.proasic3e]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/proasic3e"
[libraries.proasic3l]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/proasic3l"
[libraries.saed32]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/saed32"
[libraries.smartfusion2]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/smartfusion2"
[libraries.stratixiii]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/stratixiii"
[libraries.stratixii]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/stratixii"
[libraries.stratixiv]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/stratixiv"
[libraries.stratixv]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/stratixv"
[libraries.umc18]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/umc18"
[libraries.unisim]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/unisim"
[libraries.virage90]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/virage90"
[libraries.virage]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/virage"
[libraries.virtex]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/virtex"
[libraries.virtex5]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap/virtex5"
[libraries.opencores]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/opencores"
[libraries.eth]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/eth"
[libraries.micron]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/micron"
[libraries.ahb2ahb]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/verification/ahb2ahb"
[libraries.gan_socbridge]
vhdl-version = "93c"
path = "socbridge"

View File

@ -3,11 +3,14 @@ use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all; use IEEE.NUMERIC_STD.all;
library ganimede; library ganimede;
use ganimede.io_types.all; use ganimede.io_types.all;
library socbridge; library gan_socbridge;
use socbridge.socbridge_driver_tb_pkg.all; use gan_socbridge.socbridge_driver_pkg.all;
entity socbridge_driver is entity socbridge_driver is
generic(
MAX_PKT_SIZE : integer range 1 to 128 := 32
);
port( port(
clk : in std_logic; clk : in std_logic;
rst : in std_logic; rst : in std_logic;
@ -15,8 +18,8 @@ entity socbridge_driver is
socbridge_driver_to_controller : out socbridge_driver_to_controller_t; socbridge_driver_to_controller : out socbridge_driver_to_controller_t;
ext_to_socbridge_driver : in ext_to_socbridge_driver_t; ext_to_socbridge_driver : in ext_to_socbridge_driver_t;
socbridge_driver_to_ext : out socbridge_driver_to_ext_t; socbridge_driver_to_ext : out socbridge_driver_to_ext_t;
socbridge_driver_to_buffer : out socbridge_driver_to_buffer_t; ip_to_socbridge_driver : in ip_to_socbridge_driver_t;
buffer_to_socbridge_driver : in buffer_to_socbridge_driver_t socbridge_driver_to_ip : out socbridge_driver_to_ip_t
); );
end entity socbridge_driver; end entity socbridge_driver;
@ -24,230 +27,246 @@ architecture rtl of socbridge_driver is
signal next_parity_out : std_logic; signal next_parity_out : std_logic;
signal ext_to_socbridge_driver_rec : ext_protocol_t; signal ext_to_socbridge_driver_rec : ext_protocol_t;
shared variable socbridge_driver_to_ext_data_cmd : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0); signal next_data_out : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal test : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0); signal next_rx_transaction : transaction_t;
signal next_cmd : command_t; signal next_tx_transaction : transaction_t;
signal next_cmd_size : integer; signal next_tx_data_size, next_rx_data_size : integer;
signal next_state : state_t; signal next_rx_state : rx_state_t;
signal curr_cmd_bits : std_logic_vector(4 downto 0); signal next_tx_state : tx_state_t;
signal curr_response : response_t;
signal curr_response_bits : std_logic_vector(4 downto 0);
signal st : state_rec_t; signal st : state_rec_t;
--- TRANSLATOR --- --- TRANSLATOR ---
signal trans_st : translator_state_rec_t; signal trans_st : translator_state_rec_t;
signal trans_next_state : translator_state_t; signal trans_next_state : translator_state_t;
--- FSM COMMUNICATION ---
signal tx_sent_response, rx_received_response : std_logic;
--- MANAGEMENT COMMUNICATION ---
signal mgnt_valid_in, mgnt_valid_out, mgnt_ready_out : std_logic;
begin begin
--- DEBUG GLOBAL BINDINGS ---
-- synthesis translate_off
G_next_parity_out <= next_parity_out;
G_ext_to_socbridge_driver_rec <= ext_to_socbridge_driver_rec;
G_next_state <= next_state;
G_socbridge_driver_to_ext_data_cmd <=test;
G_curr_command_bits <= curr_cmd_bits;
G_curr_response <= curr_response;
G_curr_response_bits <= curr_response_bits;
G_st <= st;
G_trans_st <= trans_st;
-- synthesis translate_on
ext_to_socbridge_driver_rec.data <= ext_to_socbridge_driver.payload; ext_to_socbridge_driver_rec.data <= ext_to_socbridge_driver.payload;
ext_to_socbridge_driver_rec.clk <= ext_to_socbridge_driver.control(1); ext_to_socbridge_driver_rec.clk <= ext_to_socbridge_driver.control(1);
ext_to_socbridge_driver_rec.parity <= ext_to_socbridge_driver.control(0); ext_to_socbridge_driver_rec.parity <= ext_to_socbridge_driver.control(0);
-- Helpful Bindings -- comb_proc: process(ext_to_socbridge_driver, ip_to_socbridge_driver,
curr_response_bits <= ext_to_socbridge_driver.payload(7 downto 3); -- CANT USE ext_to_socbridge_driver_REC here for some reason, the assignment becomes stasteful st, controller_to_socbridge_driver, trans_st,
-- Not sure that the two process method is helping here: if this was a normal tx_sent_response, rx_received_response)
-- signal assignment there would be no confusion. variable curr_response_bits : std_logic_vector(4 downto 0);
-- in the case ... <= ext_to_socbridge_driver_rec we get variable local_next_rx_transaction : transaction_t;
-- curr_resp | ext_to_socbridge_driver_rec | ext_to_socbridge_driver variable local_next_tx_transaction : transaction_t;
-- 00000 | 00000000 | 00001001 variable local_next_data_out : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
-- 00000 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
--
-- but in the case ... <= ext_to_socbridge_driver we get
-- curr_resp | ext_to_socbridge_driver_rec | ext_to_socbridge_driver
-- 00000 | 00000000 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
with curr_response_bits select
curr_response <= WRITE_ACK when "00001",
WRITE_ACK when "00101",
READ_RESPONSE when "01000",
READ_RESPONSE when "01100",
NO_OP when others;
comb_proc: process(ext_to_socbridge_driver, buffer_to_socbridge_driver, curr_response, st, controller_to_socbridge_driver, trans_st)
begin begin
-- Outputs -- Helpful Bindings --
socbridge_driver_to_ext <= create_io_type_out_from_ext_protocol(st.socbridge_driver_to_ext_reg); next_rx_data_size <= 2 ** to_integer(unsigned(ext_to_socbridge_driver.payload(2 downto 0)));
with trans_st.curr_state select curr_response_bits := ext_to_socbridge_driver.payload(7 downto 3);
socbridge_driver_to_controller.is_active <= '0' when IDLE, -- Set helper var to current transaction seen at the input.
'1' when others; local_next_rx_transaction := NO_OP;
if curr_response_bits = "10000" then
--- State Transition Diagram --- local_next_rx_transaction := WRITE_ADD;
-- elsif curr_response_bits = "10100" then
-- local_next_rx_transaction := WRITE;
-- elsif curr_response_bits = "11000" then
-- +-----+ local_next_rx_transaction := READ_ADD;
-- | | elsif curr_response_bits = "11100" then
-- \|/ /--+ local_next_rx_transaction := READ;
-- IDLE<-------------------+ elsif curr_response_bits = "01001" then
-- / \ | local_next_rx_transaction := P_ERR;
-- / \ | elsif curr_response_bits = "00101" or curr_response_bits = "00001" then
-- / \ | local_next_rx_transaction := WRITE_ACK;
-- \|/ \|/ | elsif curr_response_bits = "01100" or curr_response_bits = "01000" then
-- TX_HEADER RX_HEADER | local_next_rx_transaction := READ_RESPONSE;
-- |\ / | | end if;
-- | \ / | | -- Outputs --
-- | ADDR1 | | socbridge_driver_to_ext.payload <= st.socbridge_driver_to_ext_reg.data;
-- | | | | socbridge_driver_to_ext.control(0) <= st.socbridge_driver_to_ext_reg.parity;
-- | \|/ | | socbridge_driver_to_ext.control(1) <= st.socbridge_driver_to_ext_reg.clk;
-- | ADDR2 | | if trans_st.curr_state = IDLE then
-- | | | | socbridge_driver_to_controller.is_active <= '0';
-- | \|/ | |
-- | ADDR3 | |
-- | | | |
-- | \|/ | |
-- | ADDR4 | |
-- | /\ | |
-- | / \ | |
-- |-+ +----| +---+ |
-- \|/ \|/ \|/ | |
-- TX_BODY RX_RESPONSE---+ |
-- | | |
-- | +--+ | |
-- \|/\|/ | \|/ |
-- TX_ACK--+ RX_BODY |
-- | | |
-- | | |
-- +-----------+--------------+
--
--- Next State Assignment ---
case st.curr_state is
when IDLE =>
if st.curr_cmd = WRITE or st.curr_cmd = WRITE_ADD then
next_state <= TX_HEADER;
elsif st.curr_cmd = READ or st.curr_cmd = READ_ADD then
next_state <= RX_HEADER;
else else
next_state <= IDLE; socbridge_driver_to_controller.is_active <= '1';
end if;
--- Next State Assignments ---
--- ### TX NEXT STATE ASSIGNMENTS ### ---
case st.curr_tx_state is
when IDLE =>
if local_next_tx_transaction /= NO_OP then
next_tx_state <= TX_HEADER;
else
next_tx_state <= IDLE;
end if; end if;
when TX_HEADER => when TX_HEADER =>
-- The header only takes one word (cycle) to transmit. -- Commands
-- Continue to body or address directly afterwards. if st.curr_tx_transaction = WRITE_ADD or st.curr_tx_transaction = READ_ADD then
if st.curr_cmd = WRITE_ADD then next_tx_state <= ADDR1;
next_state <= ADDR1; elsif st.curr_tx_transaction = WRITE then
next_tx_state <= TX_W_BODY;
elsif st.curr_tx_transaction = READ then
next_tx_state <= TX_AWAIT;
-- Responses
elsif st.curr_tx_transaction = READ_RESPONSE then
next_tx_state <= TX_R_BODY;
else else
next_state <= TX_BODY; next_tx_state <= IDLE;
end if; end if;
when TX_BODY => when TX_R_BODY =>
-- Here we want to stay in TX_BODY for the duration of a packet. if st.tx_stage <= 1 then
if st.write_stage = 0 then next_tx_state <= IDLE;
next_state <= TX_ACK;
else else
next_state <= TX_BODY; next_tx_state <= TX_R_BODY;
end if;
when TX_ACK =>
-- Wait for write acknowledgement.
if curr_response = WRITE_ACK then
next_state <= IDLE;
else
next_state <= TX_ACK;
end if;
when RX_HEADER =>
-- The header only takes one word (cycle) to transmit.
-- Continue to awaiting response directly afterwards.
if st.curr_cmd = READ_ADD then
next_state <= ADDR1;
else
next_state <= RX_RESPONSE;
end if;
when RX_RESPONSE =>
-- Wait for read response.
if curr_response = READ_RESPONSE then
next_state <= RX_BODY;
else
next_state <= RX_RESPONSE;
end if;
when RX_BODY =>
-- Here we want to stay in RX_BODY for the duration of a packet.
if st.read_stage = 0 then
next_state <= IDLE;
else
next_state <= RX_BODY;
end if; end if;
when ADDR1 => when ADDR1 =>
-- Transmits the entire address and returns to the appropriate next_tx_state <= ADDR2;
next_state <= ADDR2;
when ADDR2 => when ADDR2 =>
next_state <= ADDR3; next_tx_state <= ADDR3;
when ADDR3 => when ADDR3 =>
next_state <= ADDR4; next_tx_state <= ADDR4;
when ADDR4 => when ADDR4 =>
if st.curr_cmd = WRITE or st.curr_cmd = WRITE_ADD then if st.curr_tx_transaction = READ_ADD then
next_state <= TX_BODY; next_tx_state <= TX_AWAIT;
elsif st.curr_tx_transaction = WRITE_ADD then
next_tx_state <= TX_W_BODY;
else else
next_state <= RX_RESPONSE; next_tx_state <= IDLE;
end if;
when TX_W_BODY =>
if st.tx_stage <= 1 then
next_tx_state <= TX_AWAIT;
else
next_tx_state <= TX_W_BODY;
end if;
when TX_AWAIT =>
-- Wait for RX FSM to get a response
if (st.curr_tx_transaction = WRITE_ADD or st.curr_tx_transaction = WRITE)
and st.curr_rx_transaction = WRITE_ACK then
next_tx_state <= IDLE;
elsif (st.curr_tx_transaction = READ_ADD or st.curr_tx_transaction = READ)
and st.curr_rx_transaction = READ_RESPONSE and st.rx_stage = 1 then
next_tx_state <= IDLE;
else
next_tx_state <= TX_AWAIT;
end if; end if;
end case; end case;
--- Next State Assignment Of RX FSM ---
case st.curr_rx_state is
when IDLE =>
if local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
next_rx_state <= IDLE;
end if;
when RX_HEADER =>
-- Commands
if st.curr_rx_transaction = WRITE_ADD or st.curr_rx_transaction = READ_ADD then
next_rx_state <= ADDR1;
elsif st.curr_rx_transaction = WRITE then
next_rx_state <= RX_W_BODY;
elsif st.curr_rx_transaction = READ then
next_rx_state <= RX_AWAIT;
-- Responses
elsif st.curr_rx_transaction = READ_RESPONSE then
next_rx_state <= RX_R_BODY;
else
next_rx_state <= IDLE;
end if;
when RX_R_BODY =>
if st.rx_stage <= 1 then
next_rx_state <= IDLE;
else
next_rx_state <= RX_R_BODY;
end if;
when ADDR1 =>
next_rx_state <= ADDR2;
when ADDR2 =>
next_rx_state <= ADDR3;
when ADDR3 =>
next_rx_state <= ADDR4;
when ADDR4 =>
if st.curr_rx_transaction = READ_ADD then
next_rx_state <= RX_AWAIT;
elsif st.curr_rx_transaction = WRITE_ADD then
next_rx_state <= RX_W_BODY;
else
next_rx_state <= IDLE; -- Potentially superfluous safety
end if;
when RX_W_BODY =>
if st.rx_stage <= 1 then
next_rx_state <= RX_AWAIT;
else
next_rx_state <= RX_W_BODY;
end if;
when RX_AWAIT =>
-- Wait for TX FSM to send a response
if (st.curr_rx_transaction = WRITE_ADD or st.curr_rx_transaction = WRITE)
and st.curr_tx_transaction = WRITE_ACK then
next_rx_state <= IDLE;
elsif (st.curr_rx_transaction = READ_ADD or st.curr_rx_transaction = READ)
and st.curr_tx_transaction = READ_RESPONSE and st.tx_stage = 1 then
next_rx_state <= IDLE;
else
next_rx_state <= RX_AWAIT;
end if;
end case;
--- Combinatorial output based on current state --- --- Combinatorial output based on current state ---
socbridge_driver_to_ext_data_cmd := (others => '0'); local_next_data_out := (others => '0');
socbridge_driver_to_buffer.is_full_out <= '1'; socbridge_driver_to_ip.is_full_out <= '1';
socbridge_driver_to_buffer.write_enable_in <= '0'; socbridge_driver_to_ip.write_enable_in <= '0';
socbridge_driver_to_buffer.payload <= (others => '0'); socbridge_driver_to_ip.payload <= (others => '0');
case st.curr_state is --- ### TX_STATE BASED OUTPUT ### ---
case st.curr_tx_state is
when IDLE => when IDLE =>
if st.curr_cmd = WRITE or st.curr_cmd = WRITE_ADD then
socbridge_driver_to_ext_data_cmd := get_cmd_bits(st.curr_cmd) & get_size_bits(st.curr_cmd_size);
elsif st.curr_cmd = READ or st.curr_cmd = READ_ADD then
socbridge_driver_to_ext_data_cmd := get_cmd_bits(st.curr_cmd) & get_size_bits(st.curr_cmd_size);
else
end if;
when TX_HEADER => when TX_HEADER =>
if st.curr_cmd = WRITE_ADD then if st.curr_tx_transaction = WRITE_ACK or st.curr_tx_transaction = READ_RESPONSE then
socbridge_driver_to_ext_data_cmd := st.curr_addr(7 downto 0); local_next_data_out := get_header_bits(st.curr_tx_transaction, st.curr_rx_transaction) & get_size_bits(st.rx_data_size);
else else
socbridge_driver_to_ext_data_cmd := buffer_to_socbridge_driver.payload; local_next_data_out := get_header_bits(st.curr_tx_transaction, st.curr_rx_transaction) & get_size_bits(st.tx_data_size);
socbridge_driver_to_buffer.is_full_out <= '0';
end if; end if;
when TX_BODY => when TX_W_BODY =>
if st.write_stage > 0 then if st.tx_stage > 0 then
socbridge_driver_to_buffer.is_full_out <= '0'; socbridge_driver_to_ip.is_full_out <= '0';
socbridge_driver_to_ext_data_cmd := buffer_to_socbridge_driver.payload; local_next_data_out := ip_to_socbridge_driver.payload;
else
socbridge_driver_to_ext_data_cmd := (others => '0');
end if; end if;
when TX_ACK => when TX_R_BODY =>
when RX_HEADER => if st.tx_stage > 0 then
if st.curr_cmd = READ_ADD then socbridge_driver_to_ip.is_full_out <= '0';
socbridge_driver_to_ext_data_cmd := st.curr_addr(7 downto 0); local_next_data_out := ip_to_socbridge_driver.payload;
end if; end if;
when RX_RESPONSE => when TX_AWAIT =>
when RX_BODY =>
socbridge_driver_to_buffer.payload <= st.ext_to_socbridge_driver_reg.data;
socbridge_driver_to_buffer.write_enable_in <= '1';
when ADDR1 => when ADDR1 =>
socbridge_driver_to_ext_data_cmd := st.curr_addr(15 downto 8); local_next_data_out := st.curr_tx_addr(31 downto 24);
when ADDR2 => when ADDR2 =>
socbridge_driver_to_ext_data_cmd := st.curr_addr(23 downto 16); local_next_data_out := st.curr_tx_addr(23 downto 16);
when ADDR3 => when ADDR3 =>
socbridge_driver_to_ext_data_cmd := st.curr_addr(31 downto 24); local_next_data_out := st.curr_tx_addr(15 downto 8);
when ADDR4 => when ADDR4 =>
if st.curr_cmd = WRITE_ADD then local_next_data_out := st.curr_tx_addr(7 downto 0);
socbridge_driver_to_buffer.is_full_out <= '0';
socbridge_driver_to_ext_data_cmd := buffer_to_socbridge_driver.payload;
report integer'image(to_integer(signed(socbridge_driver_to_ext_data_cmd))) & " "& integer'image(to_integer(signed(buffer_to_socbridge_driver.payload)));
end if;
end case; end case;
next_parity_out <= calc_parity(socbridge_driver_to_ext_data_cmd); --- ### RX_STATE BASED OUTPUT ### ---
--- DEBUG GLOBAL BINDINGS --- mgnt_valid_in <= '0';
-- synthesis translate_off mgnt_valid_out <= '0';
test <= socbridge_driver_to_ext_data_cmd; mgnt_ready_out <= '0';
-- synthesis translate_on case st.curr_rx_state is
when IDLE =>
when RX_HEADER =>
when RX_W_BODY =>
-- TODO Add output signals to management unit later
-- TODO REPLACE TWO BELOW
socbridge_driver_to_ip.payload <= st.ext_to_socbridge_driver_reg.data;
socbridge_driver_to_ip.write_enable_in <= '1';
when RX_R_BODY =>
socbridge_driver_to_ip.payload <= st.ext_to_socbridge_driver_reg.data;
socbridge_driver_to_ip.write_enable_in <= '1';
when RX_AWAIT =>
if st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then
mgnt_valid_in <= '1';
end if;
when ADDR1 =>
when ADDR2 =>
when ADDR3 =>
when ADDR4 =>
end case;
next_parity_out <= calc_parity(local_next_data_out);
--- TRANSLATOR --- --- TRANSLATOR ---
--- Next state assignment --- Next state assignment
case trans_st.curr_state is case trans_st.curr_state is
when IDLE => when IDLE =>
@ -258,7 +277,7 @@ begin
end if; end if;
-- Wait for driver to go idle and send next instruction. Then enter AWAIT -- Wait for driver to go idle and send next instruction. Then enter AWAIT
when SEND => when SEND =>
if st.curr_state /= IDLE then if st.curr_tx_state /= IDLE then
trans_next_state <= SEND_ACCEPTED; trans_next_state <= SEND_ACCEPTED;
else else
trans_next_state <= SEND; trans_next_state <= SEND;
@ -268,45 +287,56 @@ begin
trans_next_state <= AWAIT; trans_next_state <= AWAIT;
-- Wait for driver to finish current instruction, then reenter SEND -- Wait for driver to finish current instruction, then reenter SEND
when AWAIT => when AWAIT =>
if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_state = IDLE then if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_tx_state = IDLE then
trans_next_state <= IDLE; trans_next_state <= IDLE;
elsif st.curr_state = IDLE then elsif st.curr_tx_state = IDLE then
trans_next_state <= SEND; trans_next_state <= SEND;
else else
trans_next_state <= AWAIT; trans_next_state <= AWAIT;
end if; end if;
end case; end case;
--- Combinatorial output based on state --- NEXT TX TRANSACTION ---
next_cmd <= NO_OP; local_next_tx_transaction := NO_OP;
next_cmd_size <= 0; next_tx_data_size <= 0;
if trans_st.curr_state = IDLE and st.curr_rx_state = RX_AWAIT then
if st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then
local_next_tx_transaction := WRITE_ACK;
elsif st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD then
next_tx_data_size <= st.rx_data_size;
local_next_tx_transaction := READ_RESPONSE;
end if;
end if;
case trans_st.curr_state is case trans_st.curr_state is
when IDLE => when IDLE =>
when SEND => when SEND =>
if trans_st.is_first_word = '1' then if trans_st.is_first_word = '1' then
if trans_st.curr_inst.instruction = READ then if trans_st.curr_inst.instruction = READ then
next_cmd <= READ_ADD; local_next_tx_transaction := READ_ADD;
elsif trans_st.curr_inst.instruction = WRITE then elsif trans_st.curr_inst.instruction = WRITE then
next_cmd <= WRITE_ADD; local_next_tx_transaction := WRITE_ADD;
end if; end if;
else else
if trans_st.curr_inst.instruction = READ then if trans_st.curr_inst.instruction = READ then
next_cmd <= READ; local_next_tx_transaction := READ;
elsif trans_st.curr_inst.instruction = WRITE then elsif trans_st.curr_inst.instruction = WRITE then
next_cmd <= WRITE; local_next_tx_transaction := WRITE;
end if; end if;
end if; end if;
if trans_st.curr_inst.seq_mem_access_count > 128 then if trans_st.curr_inst.seq_mem_access_count > MAX_PKT_SIZE then
next_cmd_size <= 128; next_tx_data_size <= MAX_PKT_SIZE;
elsif trans_st.curr_inst.seq_mem_access_count > 0 then elsif trans_st.curr_inst.seq_mem_access_count > 0 then
next_cmd_size <= trans_st.curr_inst.seq_mem_access_count; next_tx_data_size <= trans_st.curr_inst.seq_mem_access_count;
else else
next_cmd_size <= 0; next_tx_data_size <= 0;
end if; end if;
when others => when others =>
end case; end case;
next_tx_transaction <= local_next_tx_transaction;
next_rx_transaction <= local_next_rx_transaction;
next_data_out <= local_next_data_out;
end process comb_proc; end process comb_proc;
-- Process updating internal registers based on primary clock -- Process updating internal registers based on primary clock
seq_proc: process(ext_to_socbridge_driver_rec.clk, rst, clk) seq_proc: process(ext_to_socbridge_driver_rec.clk, rst, clk)
@ -316,47 +346,79 @@ begin
st.socbridge_driver_to_ext_reg.data <= (others => '0'); st.socbridge_driver_to_ext_reg.data <= (others => '0');
st.socbridge_driver_to_ext_reg.clk <= '0'; st.socbridge_driver_to_ext_reg.clk <= '0';
st.socbridge_driver_to_ext_reg.parity <= '1'; st.socbridge_driver_to_ext_reg.parity <= '1';
st.curr_state <= IDLE; st.curr_tx_state <= IDLE;
st.write_stage <= 0; st.curr_rx_state <= IDLE;
st.read_stage <= 0; st.tx_stage <= 0;
st.curr_cmd <= NO_OP; st.rx_stage <= 0;
st.curr_cmd_size <= 0; st.curr_tx_transaction <= NO_OP;
st.curr_addr <= (others => '0'); st.curr_rx_transaction <= NO_OP;
st.tx_data_size <= 0;
st.curr_tx_addr <= (others => '0');
st.curr_rx_addr <= (others => '0');
st.curr_write_data <= (others => '0');
st.curr_read_data <= (others => '0');
elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then
st.ext_to_socbridge_driver_reg.data <= ext_to_socbridge_driver_rec.data; st.ext_to_socbridge_driver_reg.data <= ext_to_socbridge_driver_rec.data;
st.ext_to_socbridge_driver_reg.clk <= ext_to_socbridge_driver_rec.clk; st.ext_to_socbridge_driver_reg.clk <= ext_to_socbridge_driver_rec.clk;
st.ext_to_socbridge_driver_reg.parity <= ext_to_socbridge_driver_rec.parity; st.ext_to_socbridge_driver_reg.parity <= ext_to_socbridge_driver_rec.parity;
st.socbridge_driver_to_ext_reg.data <= socbridge_driver_to_ext_data_cmd; st.socbridge_driver_to_ext_reg.data <= next_data_out;
st.socbridge_driver_to_ext_reg.clk <= not st.socbridge_driver_to_ext_reg.clk; st.socbridge_driver_to_ext_reg.clk <= not st.socbridge_driver_to_ext_reg.clk;
st.socbridge_driver_to_ext_reg.parity <= next_parity_out; st.socbridge_driver_to_ext_reg.parity <= next_parity_out;
st.curr_state <= next_state; st.curr_tx_state <= next_tx_state;
case st.curr_state is st.curr_rx_state <= next_rx_state;
case st.curr_tx_state is
when IDLE => when IDLE =>
st.curr_cmd <= next_cmd; st.curr_tx_transaction <= next_tx_transaction;
st.curr_cmd_size <= next_cmd_size; st.tx_data_size <= next_tx_data_size;
st.curr_addr <= trans_st.curr_inst.address; st.curr_tx_addr <= trans_st.curr_inst.address;
if next_cmd_size > 0 then if next_tx_transaction = WRITE_ADD or next_tx_transaction = WRITE
st.write_stage <= next_cmd_size - 1; or next_tx_transaction = READ_RESPONSE then
st.read_stage <= next_cmd_size - 1; st.tx_stage <= next_tx_data_size;
end if;
when TX_HEADER =>
when TX_BODY =>
if st.write_stage > 0 then
st.write_stage <= st.write_stage - 1;
end if;
when TX_ACK =>
st.curr_cmd <= NO_OP;
st.curr_cmd_size <= 0;
when RX_HEADER =>
when RX_BODY =>
if st.read_stage > 0 then
st.read_stage <= st.read_stage - 1;
else else
st.curr_cmd <= NO_OP; st.tx_stage <= 0;
st.curr_cmd_size <= 0;
end if; end if;
when TX_W_BODY =>
if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1;
end if;
when TX_R_BODY =>
if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1;
end if;
when others =>
end case;
case st.curr_rx_state is
when IDLE =>
st.curr_rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
when RX_HEADER =>
if st.curr_rx_transaction = READ then
st.curr_rx_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.curr_rx_addr) + 4), 32));
end if;
when RX_R_BODY =>
if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1;
end if;
when RX_W_BODY =>
if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1;
st.curr_write_data((st.rx_stage) * 8 - 1 downto (st.rx_stage - 1) * 8) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR1 =>
st.curr_rx_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
when ADDR2 =>
st.curr_rx_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
when ADDR3 =>
st.curr_rx_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
when ADDR4 =>
st.curr_rx_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
when others => when others =>
end case; end case;
end if; end if;
@ -381,9 +443,9 @@ begin
trans_st.is_first_word <= '1'; trans_st.is_first_word <= '1';
when SEND => when SEND =>
when SEND_ACCEPTED => when SEND_ACCEPTED =>
trans_st.curr_inst.seq_mem_access_count <= trans_st.curr_inst.seq_mem_access_count - 128; trans_st.curr_inst.seq_mem_access_count <= trans_st.curr_inst.seq_mem_access_count - MAX_PKT_SIZE;
when AWAIT => when AWAIT =>
if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_state = IDLE then if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_tx_state = IDLE then
trans_st.curr_inst.request <= '0'; trans_st.curr_inst.request <= '0';
trans_st.curr_inst.address <= (others => '0'); trans_st.curr_inst.address <= (others => '0');
trans_st.curr_inst.seq_mem_access_count <= 0; trans_st.curr_inst.seq_mem_access_count <= 0;

View File

@ -6,20 +6,19 @@ library ganimede;
use ganimede.io_types.all; use ganimede.io_types.all;
package socbridge_driver_tb_pkg is package socbridge_driver_pkg is
subtype command_size_t is integer range 0 to 128; subtype command_size_t is integer range 0 to 128;
type command_t is type transaction_t is
(NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR); (NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR, WRITE_ACK, READ_RESPONSE);
type response_t is type rx_state_t is
(NO_OP, WRITE_ACK, READ_RESPONSE); (IDLE, ADDR1, ADDR2, ADDR3, ADDR4, RX_AWAIT,
RX_R_BODY, RX_HEADER, RX_W_BODY);
type state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4,
TX_HEADER, TX_BODY, TX_ACK,
RX_HEADER, RX_RESPONSE, RX_BODY);
type tx_state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4, TX_AWAIT,
TX_HEADER, TX_W_BODY, TX_R_BODY);
--- TRANSLATOR --- --- TRANSLATOR ---
type translator_state_t is (IDLE, SEND, SEND_ACCEPTED, AWAIT); type translator_state_t is (IDLE, SEND, SEND_ACCEPTED, AWAIT);
@ -36,12 +35,17 @@ package socbridge_driver_tb_pkg is
end record ext_protocol_t; end record ext_protocol_t;
type state_rec_t is record type state_rec_t is record
curr_state: state_t; curr_rx_transaction : transaction_t;
curr_tx_transaction : transaction_t;
curr_rx_state: rx_state_t;
curr_tx_state: tx_state_t;
ext_to_socbridge_driver_reg, socbridge_driver_to_ext_reg : ext_protocol_t; ext_to_socbridge_driver_reg, socbridge_driver_to_ext_reg : ext_protocol_t;
write_stage, read_stage : NATURAL; tx_stage, rx_stage : NATURAL;
curr_cmd : command_t; tx_data_size, rx_data_size : integer;
curr_cmd_size: integer; curr_write_data : std_logic_vector(31 downto 0);
curr_addr : std_logic_vector(31 downto 0); curr_read_data : std_logic_vector(31 downto 0);
curr_tx_addr : std_logic_vector(31 downto 0);
curr_rx_addr : std_logic_vector(31 downto 0);
end record state_rec_t; end record state_rec_t;
impure function calc_parity( impure function calc_parity(
d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0) d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0)
@ -50,26 +54,13 @@ package socbridge_driver_tb_pkg is
input: ext_protocol_t input: ext_protocol_t
) return socbridge_driver_to_ext_t; ) return socbridge_driver_to_ext_t;
function to_string ( a: std_logic_vector) return string; function to_string ( a: std_logic_vector) return string;
pure function get_cmd_bits(command : command_t) return std_logic_vector; pure function get_header_bits(transaction : transaction_t; caused_by: transaction_t) return std_logic_vector;
pure function get_size_bits(size : command_size_t) return std_logic_vector; pure function get_size_bits(size : command_size_t) return std_logic_vector;
pure function get_size_bits_sim(size : command_size_t) return std_logic_vector; pure function get_size_bits_sim(size : command_size_t) return std_logic_vector;
--- DEBUG GLOBAL SIGNALS ---
-- synthesis translate_off
signal G_next_parity_out : std_logic;
signal G_ext_to_socbridge_driver_rec : ext_protocol_t;
signal G_socbridge_driver_to_ext_data_cmd : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal G_next_state : state_t;
signal G_curr_command : command_t;
signal G_curr_command_bits : std_logic_vector(4 downto 0);
signal G_curr_response : response_t;
signal G_curr_response_bits : std_logic_vector(4 downto 0);
signal G_st : state_rec_t;
signal G_trans_st : translator_state_rec_t;
-- synthesis translate_on
end package socbridge_driver_tb_pkg; end package socbridge_driver_pkg;
package body socbridge_driver_tb_pkg is package body socbridge_driver_pkg is
function to_string ( a: std_logic_vector) return string is function to_string ( a: std_logic_vector) return string is
variable b : string (1 to a'length) := (others => NUL); variable b : string (1 to a'length) := (others => NUL);
variable stri : integer := 1; variable stri : integer := 1;
@ -105,18 +96,33 @@ package body socbridge_driver_tb_pkg is
val.control(0) := input.parity; val.control(0) := input.parity;
return val; return val;
end function; end function;
pure function get_cmd_bits(command : command_t)
pure function get_header_bits(transaction : transaction_t; caused_by : transaction_t)
return std_logic_vector is return std_logic_vector is
variable val : std_logic_vector(4 downto 0); variable val : std_logic_vector(4 downto 0);
begin begin
with command select val := "11111";
val := "00000" when NO_OP, if transaction = NO_OP then
"10000" when WRITE_ADD, val := "00000";
"10100" when WRITE, elsif transaction = WRITE_ADD then
"11000" when READ_ADD, val := "10000";
"11100" when READ, elsif transaction = WRITE then
"01001" when P_ERR, val := "10100";
"11111" when others; elsif transaction = READ_ADD then
val := "11000";
elsif transaction = READ then
val := "11100";
elsif transaction = WRITE_ACK and caused_by = WRITE then
val := "00101";
elsif transaction = WRITE_ACK and caused_by = WRITE_ADD then
val := "00001";
elsif transaction = READ_RESPONSE and caused_by = READ then
val := "01100";
elsif transaction = READ_RESPONSE and caused_by = READ_ADD then
val := "01000";
elsif transaction = P_ERR then
val := "01001";
end if;
return val; return val;
end function; end function;
@ -153,4 +159,4 @@ package body socbridge_driver_tb_pkg is
val := std_logic_vector(TO_UNSIGNED(size - 1, 3)); val := std_logic_vector(TO_UNSIGNED(size - 1, 3));
return val; return val;
end function; end function;
end package body socbridge_driver_tb_pkg; end package body socbridge_driver_pkg;

View File

@ -1,11 +1,12 @@
library IEEE; library IEEE;
use IEEE.std_logic_1164.all; use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;
use IEEE.MATH_REAL.all; use IEEE.MATH_REAL.all;
library work; library work;
use work.socbridge_driver_tb_pkg.all; use work.socbridge_driver_pkg.all;
library ganimede; library ganimede;
use ganimede.io_types.all; use ganimede.io_types.all;
library socbridge; library gan_socbridge;
entity socbridge_driver_tb is entity socbridge_driver_tb is
@ -14,319 +15,95 @@ end entity socbridge_driver_tb;
architecture tb of socbridge_driver_tb is architecture tb of socbridge_driver_tb is
signal clk : std_logic := '0'; signal clk : std_logic := '0';
signal rst : std_logic; signal rst : std_logic;
signal cmd : command_t;
signal address : std_logic_vector(31 downto 0);
signal cmd_size : positive;
signal ext_to_socbridge_driver : ext_to_socbridge_driver_t; signal ext_to_socbridge_driver : ext_to_socbridge_driver_t;
signal socbridge_driver_to_ext : socbridge_driver_to_ext_t; signal socbridge_driver_to_ext : socbridge_driver_to_ext_t;
signal buffer_to_socbridge_driver : buffer_to_socbridge_driver_t; signal ip_to_socbridge_driver : ip_to_socbridge_driver_t;
signal socbridge_driver_to_buffer : socbridge_driver_to_buffer_t; signal socbridge_driver_to_ip : socbridge_driver_to_ip_t;
signal controller_to_socbridge_driver : controller_to_socbridge_driver_t; signal controller_to_socbridge_driver : controller_to_socbridge_driver_t;
signal socbridge_driver_controller : socbridge_driver_to_controller_t; signal socbridge_driver_to_controller : socbridge_driver_to_controller_t;
signal curr_word : std_logic_vector(ext_to_socbridge_driver.payload'length - 1 downto 0); shared variable done : boolean := FALSE;
signal expected_out : std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0);
constant CLK_PERIOD : TIME := 10 ns; constant CLK_PERIOD : TIME := 10 ns;
constant SIMULATION_CYCLE_COUNT : INTEGER := 100; constant MAX_CYCLE_COUNT : INTEGER := 1000000;
procedure fail(error_msg : string) is
begin
wait for CLK_PERIOD;
report "Simulation ending due to: " & error_msg & ". Shutting down..." severity FAILURE;
end procedure;
procedure check_next_state(correct_state: state_t) is
begin
if(not (correct_state = G_next_state)) then
report "Next State is not what was expected, found " & state_t'image(G_next_state)
& " but expected " & state_t'image(correct_state) severity error;
fail("Next State");
end if;
end procedure;
procedure check_data_out(correct_data: std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0)) is
begin
if(not (correct_data = socbridge_driver_to_ext.payload)) then
report "Data out is not what was expected, found " & to_string(socbridge_driver_to_ext.payload)
& " but expected " & to_string(correct_data) severity error;
fail("Data out");
end if;
end procedure;
procedure check_parity(correct_data: std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0)) is
begin
if(not (calc_parity(correct_data) = calc_parity(socbridge_driver_to_ext.payload))) then
report "Parity out is not what was expected, found " & std_logic'image(calc_parity(socbridge_driver_to_ext.payload))
& " but expected " & std_logic'image(calc_parity(correct_data)) severity error;
fail("Parity out");
end if;
end procedure;
-- component socbridge_driver is
-- port(
-- clk : in std_logic;
-- rst : in std_logic;
-- cmd : in command_t;
-- address : in std_logic_vector(31 downto 0);
-- cmd_size: in positive;
-- ext_to_socbridge_driver : in ext_to_socbridge_driver_t;
-- socbridge_driver_to_ext : out socbridge_driver_to_ext_t;
-- buffer_to_socbridge_driver : out buffer_to_socbridge_driver_t;
-- socbridge_driver_to_buffer : in socbridge_driver_to_buffer_t
-- );
-- end component socbridge_driver;
begin begin
socbridge_driver_inst: entity socbridge.socbridge_driver socbridge_driver_inst: entity gan_socbridge.socbridge_driver
port map( port map(
clk => clk, clk => clk,
rst => rst, rst => rst,
controller_to_socbridge_driver => controller_to_socbridge_driver, controller_to_socbridge_driver => controller_to_socbridge_driver,
socbridge_driver_to_controller => socbridge_driver_controller, socbridge_driver_to_controller => socbridge_driver_to_controller,
ext_to_socbridge_driver => ext_to_socbridge_driver, ext_to_socbridge_driver => ext_to_socbridge_driver,
socbridge_driver_to_ext => socbridge_driver_to_ext, socbridge_driver_to_ext => socbridge_driver_to_ext,
buffer_to_socbridge_driver => buffer_to_socbridge_driver, ip_to_socbridge_driver => ip_to_socbridge_driver,
socbridge_driver_to_buffer => socbridge_driver_to_buffer socbridge_driver_to_ip => socbridge_driver_to_ip
); );
ext_to_socbridge_driver.control(1) <= clk; ext_to_socbridge_driver.control(1) <= clk;
real_clk_proc: process real_clk_proc: process
variable cycle_count :integer := 0;
begin begin
for x in 0 to SIMULATION_CYCLE_COUNT*2 loop while (not done) and (cycle_count < MAX_CYCLE_COUNT) loop
clk <= not clk; clk <= not clk;
wait for CLK_PERIOD / 2; wait for CLK_PERIOD / 2;
end loop; end loop;
wait; wait;
end process real_clk_proc; end process real_clk_proc;
verify_clk: process reset_proc: process
variable last_clk : std_logic;
begin begin
wait for CLK_PERIOD / 2; rst <= '1';
for x in 0 to SIMULATION_CYCLE_COUNT loop wait for CLK_PERIOD * 3;
if last_clk = socbridge_driver_to_ext.control(1) then rst <= '0';
report "Secondary side clk not correct." severity error;
end if;
last_clk := socbridge_driver_to_ext.control(1);
wait for CLK_PERIOD;
end loop;
wait; wait;
end process verify_clk; end process reset_proc;
verify_out_signals: process
begin
wait for CLK_PERIOD / 2;
for x in 0 to SIMULATION_CYCLE_COUNT loop
check_data_out(expected_out);
check_parity(expected_out);
wait for CLK_PERIOD;
end loop;
wait;
end process verify_out_signals;
verify_signals : process
begin
expected_out <= "00000000";
wait for 3 * CLK_PERIOD;
wait for CLK_PERIOD / 3;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD /4;
check_next_state(TX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(WRITE) & get_size_bits_sim(2);
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000001";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000010";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait for CLK_PERIOD * 6;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD /4;
check_next_state(TX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(WRITE_ADD) & get_size_bits(2);
check_next_state(ADDR1);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(ADDR2);
wait for CLK_PERIOD;
expected_out <= x"A0";
check_next_state(ADDR3);
wait for CLK_PERIOD;
expected_out <= x"0F";
check_next_state(ADDR4);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000100";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00001000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD * 2;
wait for CLK_PERIOD /4;
check_next_state(RX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(READ) & get_size_bits(2);
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait for CLK_PERIOD * 5;
wait for CLK_PERIOD /4;
check_next_state(RX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(READ_ADD) & get_size_bits(2);
check_next_state(ADDR1);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(ADDR2);
wait for CLK_PERIOD;
expected_out <= x"A0";
check_next_state(ADDR3);
wait for CLK_PERIOD;
expected_out <= x"0F";
check_next_state(ADDR4);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait;
end process verify_signals;
command_stimulus: process command_stimulus: process
begin begin
cmd <= NO_OP; controller_to_socbridge_driver.instruction <= NO_OP;
cmd_size <= 2; controller_to_socbridge_driver.seq_mem_access_count <= 0;
wait for 3*CLK_PERIOD; controller_to_socbridge_driver.request <= '0';
wait for CLK_PERIOD / 2; controller_to_socbridge_driver.address <= x"00000000";
cmd <= WRITE; wait until rst='0';
wait for CLK_PERIOD; for i in 100 downto 0 loop
cmd <= NO_OP; wait until rising_edge(clk);
wait for CLK_PERIOD * 10; end loop;
cmd <= WRITE_ADD; controller_to_socbridge_driver.instruction <= WRITE;
address <= x"FA0FA0FA"; controller_to_socbridge_driver.seq_mem_access_count <= 128;
wait for CLK_PERIOD; controller_to_socbridge_driver.address <= x"40000000";
cmd <= NO_OP; wait until rising_edge(clk);
address <= (others => '0'); controller_to_socbridge_driver.request <= '1';
wait for CLK_PERIOD * 10; wait until socbridge_driver_to_controller.is_active = '1';
cmd <= READ; controller_to_socbridge_driver.request <= '0';
wait for CLK_PERIOD; wait until socbridge_driver_to_controller.is_active = '0';
cmd <= NO_OP; for i in 100 downto 0 loop
wait for CLK_PERIOD * 10; wait until rising_edge(clk);
cmd <= READ_ADD; end loop;
address <= x"FA0FA0FA"; controller_to_socbridge_driver.instruction <= READ;
wait for CLK_PERIOD; controller_to_socbridge_driver.seq_mem_access_count <= 128;
cmd <= NO_OP; controller_to_socbridge_driver.address <= x"40000000";
address <= (others => '0'); wait until rising_edge(clk);
controller_to_socbridge_driver.request <= '1';
wait until socbridge_driver_to_controller.is_active = '1';
controller_to_socbridge_driver.request <= '0';
wait until socbridge_driver_to_controller.is_active = '0';
done := TRUE;
wait; wait;
end process command_stimulus; end process command_stimulus;
external_stimulus_signal: process(curr_word)
begin
ext_to_socbridge_driver.payload <= curr_word;
ext_to_socbridge_driver.control(0) <= calc_parity(curr_word);
end process external_stimulus_signal;
external_stimulus: process
begin
rst <= '0';
wait for CLK_PERIOD / 1000;
rst <= '1';
curr_word <= "00000000";
wait for 999 * CLK_PERIOD / 1000;
wait for 2 * CLK_PERIOD;
rst <= '0';
wait for CLK_PERIOD / 2;
wait for 4* CLK_PERIOD;
curr_word <= "00001001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD * 14;
curr_word <= "00101001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD*5;
curr_word <= "01000001";
wait for CLK_PERIOD;
curr_word <= "10000000";
wait for CLK_PERIOD;
curr_word <= "01000000";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD*12;
curr_word <= "01100001";
wait for CLK_PERIOD;
curr_word <= "00100000";
wait for CLK_PERIOD;
curr_word <= "00010000";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait;
end process external_stimulus;
internal_stimulus: process internal_stimulus: process
variable count : integer := 1;
begin begin
buffer_to_socbridge_driver.is_full_in <= '0'; ip_to_socbridge_driver.is_full_in <= '0';
buffer_to_socbridge_driver.write_enable_out <= '0'; ip_to_socbridge_driver.write_enable_out <= '0';
wait for 3 * CLK_PERIOD; wait until rst = '0';
-- stimulus goes here -- stimulus goes here
buffer_to_socbridge_driver.write_enable_out <= '1';
buffer_to_socbridge_driver.payload <= "00000001"; while not done loop
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0'; wait until (rising_edge(socbridge_driver_to_ext.control(1)) or falling_edge(socbridge_driver_to_ext.control(1))) and socbridge_driver_to_ip.is_full_out = '0';
wait until falling_edge(clk); ip_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(count, 8));
buffer_to_socbridge_driver.payload <= "00000010"; count := count + 1;
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0'; end loop;
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00000100";
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00001000";
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00010000";
wait until socbridge_driver_to_buffer.is_full_out = '0';
wait for CLK_PERIOD/2;
wait until rising_edge(clk);
wait until rising_edge(clk);
buffer_to_socbridge_driver.payload <= "00100000";
wait until socbridge_driver_to_buffer.is_full_out = '0';
wait for CLK_PERIOD/2;
wait until rising_edge(clk);
wait until rising_edge(clk); --- ??? Why all these rising_edge checks?
wait; wait;
end process internal_stimulus; end process internal_stimulus;
end architecture tb ; end architecture tb ;

View File

@ -3,15 +3,25 @@ standard = "1993"
# File names are either absolute or relative to the parent folder of the vhdl_ls.toml file # File names are either absolute or relative to the parent folder of the vhdl_ls.toml file
[libraries] [libraries]
ganimede.files = [ ganimede.files = [
'ganimede/io_type_pkg.vhd' 'ganimede/io_type_pkg.vhd',
'ganimede/ganimede.vhd'
] ]
socbridge.files = [ gan_socbridge.files = [
'socbridge/*.vhd' 'socbridge/*.vhd'
] ]
controller.files = [ controller.files = [
'controller/*.vhd', 'controller/*.vhd',
] ]
grlib.files = [
'grlib-com-nx-2024.4-b4295/lib/grlib/**/*.vhd',
]
techmap.files = [
'grlib-com-nx-2024.4-b4295/lib/techmap/gencomp/**/*.vhd',
]
gaisler.files = [
'grlib-com-nx-2024.4-b4295/lib/gaisler/**/*.vhd',
]
[lint] [lint]
unused = 'error' # Upgrade the 'unused' diagnostic to the 'error' severity unused = 'error' # Upgrade the 'unused' diagnostic to the 'error' severity