Compare commits

...

40 Commits

Author SHA1 Message Date
e55a2d554f removed unnecessary manager registers 2025-05-28 17:05:09 +02:00
5824ea5d9a added all required functionality for correct execution (except for read buffer aware reads) 2025-05-28 17:02:46 +02:00
cb1bb36b63 Single issue driver is back online 2025-04-22 19:51:30 +02:00
8db176c6b5 Fixed a read-write mixup 2025-04-22 19:43:26 +02:00
15ea79bed6 Functionality seems correct but testbench needs to be adapted to single issue 2025-04-22 18:31:49 +02:00
a2917a3b04 Dummy ip works 2025-04-22 14:36:27 +02:00
c44c153bb3 bidir transfer: now works in socbridge verification tb 2025-04-21 17:02:46 +02:00
94fa595d6f added dummy ip core which increments each element by 1 2025-04-21 15:23:18 +02:00
77de1ca975 WIP: bi-dir socbridge driver (fiddling with tb memory atm) 2025-04-21 15:20:44 +02:00
f2a03fab24 buffers appear to be working 2025-04-18 20:02:39 +02:00
6a6ebdef95 Standardized fifo type adn full test debugging 2025-04-18 15:27:34 +02:00
241fe60024 simple test software to run ganimede instructions on LEON3 tb 2025-04-17 17:25:20 +02:00
4d4778f541 added initial record type for instructions in management 2025-04-17 13:43:08 +02:00
a656eb24e7 fixed reading/writing from/to socbridge in entire system 2025-04-16 20:03:17 +02:00
48dff427d4 Standardized fifo types and names 2025-04-16 16:50:34 +02:00
554e3cadab buffer probably done but untested, need to rework ganimede toplevel 2025-04-15 18:06:34 +02:00
56ab5e090a minor fixes 2025-04-15 15:18:00 +02:00
44018d5827 Started work on fifo buffer 2025-04-10 16:14:16 +02:00
fccf2dbba3 PRIMITIVE SUCCESS: made ganimede work in simulation (only 4 byte r/w to ganimede) 2025-04-09 15:24:55 +02:00
b56ce3a590 Added prefix "gan_" to all libraries 2025-04-08 16:20:19 +02:00
5913fc8764 Restored gtkwave file for socbridge driver testbench 2025-04-08 14:59:33 +02:00
3fe4b9cedd Fixed some bugs and made manager compatible with byte addressing 2025-04-08 14:59:33 +02:00
f46fde4333 merged manager and ganimede-rework 2025-04-08 14:57:18 +02:00
11b42f3211 Renamed some types 2025-04-08 14:52:43 +02:00
1b2c7600e6 first version of management unit done 2025-04-08 14:52:43 +02:00
2b85765e1f made ganimede synthesizable 2025-04-07 12:21:20 +02:00
31f0c45f2b socbridge fully works with existing socbridge 2025-04-07 11:24:51 +02:00
abbe417dd3 added most functionality for answering to commands from external socbridge 2025-04-04 17:51:46 +02:00
3cf9a13019 Updated driver with split FSMs, DMA from socbridge works 2025-04-04 16:48:26 +02:00
842d8b2305 fixed imports for socbridge 2025-04-04 16:47:53 +02:00
0747cbfdc9 made some progress on reformatting socbridge driver 2025-04-03 17:13:01 +02:00
ffa2ee768c added grlib support (socbridge needs to be recompiled) 2025-04-03 16:14:26 +02:00
c6c5d2d7fc RX FSM almost done 2025-04-03 12:23:51 +02:00
b3a2c4e34a Rough outline of new FSMs probably done. All remaining work is hopefully covered by TODOs 2025-04-02 17:26:51 +02:00
421ed1c006 Continued work on updating FSMs in SoCBridge-driver 2025-04-02 16:13:00 +02:00
b09ab5f1ad Started reworking socbridge driver 2025-04-01 17:04:29 +02:00
d739518596 Added synthesis artifact folder to gitignore 2025-03-31 11:12:59 +02:00
678afc4bd9 testbench might work but ghdl broke so could not test 2025-03-17 12:16:20 +01:00
88dcd19a47 Refactored controller types to support multiple drivers. Also started ganimede tb 2025-03-14 17:01:15 +01:00
10d519301e Started working on implementing units in top level 2025-03-13 17:20:28 +01:00
24 changed files with 1770 additions and 799 deletions

2
.gitignore vendored
View File

@ -1,2 +1,4 @@
**/wave
**/work
**/syn
scripts/ghdl

View File

@ -1,4 +0,0 @@
#!/bin/bash
VARS="$@"
COMMAND="ghdl $VARS"
docker run -it -v .:/src -w /src ghdl/ghdl:5.0.0-dev-gcc-ubuntu-24.04 bash -c "$COMMAND"

View File

@ -1,6 +0,0 @@
#!/bin/bash
source /gsl/cad/modules/init/bash
module add /gsl/cad/modules/modulefiles/nanoxplore/nxdesignsuite/24.3.0.0
nxpython $@

1
src/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
**/grlib*/**

View File

@ -1,11 +1,11 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library ganimede;
use ganimede.io_types.all;
library socbridge;
use socbridge.socbridge_driver_tb_pkg.all;
library controller;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library gan_controller;
entity control_socbridge_tb is
end entity control_socbridge_tb;
@ -23,8 +23,8 @@ architecture tb of control_socbridge_tb is
control => (others => '0')
);
signal socbridge_driver_to_ext : socbridge_driver_to_ext_t;
signal socbridge_driver_to_buffer : socbridge_driver_to_buffer_t;
signal buffer_to_socbridge_driver : buffer_to_socbridge_driver_t := (
signal socbridge_driver_to_ip : socbridge_driver_to_ip_t;
signal ip_to_socbridge_driver : ip_to_socbridge_driver_t := (
payload => (others => '0'),
write_enable_out => '0',
is_full_in => '0'
@ -35,9 +35,9 @@ architecture tb of control_socbridge_tb is
seq_mem_access_count => 0,
cmd => "00"
);
signal socbridge_driver_to_controller: socbridge_driver_to_controller_t := (is_active => '0');
signal drivers_to_controller: drivers_to_controller_t := (socbridge => (is_active => '0'));
signal controller_to_cpu: controller_to_cpu_t;
signal controller_to_socbridge_driver: controller_to_socbridge_driver_t;
signal controller_to_drivers: controller_to_drivers_t;
signal curr_word : std_logic_vector(ext_to_socbridge_driver.payload'length - 1 downto 0);
signal expected_out : std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0);
@ -80,12 +80,12 @@ begin
port map(
clk => clk,
rst => rst,
controller_to_socbridge_driver => controller_to_socbridge_driver,
socbridge_driver_to_controller => socbridge_driver_to_controller,
controller_to_socbridge_driver => controller_to_drivers.socbridge,
socbridge_driver_to_controller => drivers_to_controller.socbridge,
ext_to_socbridge_driver => ext_to_socbridge_driver,
socbridge_driver_to_ext => socbridge_driver_to_ext,
buffer_to_socbridge_driver => buffer_to_socbridge_driver,
socbridge_driver_to_buffer => socbridge_driver_to_buffer
ip_to_socbridge_driver => ip_to_socbridge_driver,
socbridge_driver_to_ip => socbridge_driver_to_ip
);
controller_unit_inst: entity controller.control_unit
@ -94,8 +94,8 @@ begin
rst => rst,
cpu_to_controller => cpu_to_controller,
controller_to_cpu => controller_to_cpu,
socbridge_driver_to_controller => socbridge_driver_to_controller,
controller_to_socbridge_driver => controller_to_socbridge_driver
drivers_to_controller => drivers_to_controller,
controller_to_drivers => controller_to_drivers
);
ext_to_socbridge_driver.control(1) <= clk;
@ -121,21 +121,21 @@ begin
rst <= '0';
cpu_to_controller.address <= x"FA0FA0FA";
cpu_to_controller.cmd <= "01";
wait until socbridge_driver_to_controller.is_active = '1';
wait until drivers_to_controller.socbridge.is_active = '1';
report "Task received in driver, awaiting completion...";
cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00";
wait until socbridge_driver_to_controller.is_active = '0';
wait until drivers_to_controller.socbridge.is_active = '0';
wait for CLK_PERIOD;
report "Task completed in driver, sending next task...";
cpu_to_controller.address <= x"FA0FA0FA";
cpu_to_controller.cmd <= "10";
wait for CLK_PERIOD;
wait until socbridge_driver_to_controller.is_active = '1';
wait until drivers_to_controller.socbridge.is_active = '1';
report "Task received in driver, awaiting completion...";
cpu_to_controller.address <= (others => '0');
cpu_to_controller.cmd <= "00";
wait until socbridge_driver_to_controller.is_active = '0';
wait until drivers_to_controller.socbridge.is_active = '0';
wait for CLK_PERIOD;
report "Task completed in driver, ending simulation stimulus";
cpu_to_controller.address <= (others => '0');
@ -197,19 +197,19 @@ begin
internal_stimulus: process
variable input : positive := 1;
begin
buffer_to_socbridge_driver.is_full_in <= '0';
buffer_to_socbridge_driver.write_enable_out <= '0';
ip_to_socbridge_driver.is_full_in <= '0';
ip_to_socbridge_driver.write_enable_out <= '0';
wait for 3 * CLK_PERIOD;
-- stimulus goes here
buffer_to_socbridge_driver.write_enable_out <= '1';
buffer_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, buffer_to_socbridge_driver.payload'length));
ip_to_socbridge_driver.write_enable_out <= '1';
ip_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, ip_to_socbridge_driver.payload'length));
input := input + 1 mod 256;
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until rising_edge(clk) and socbridge_driver_to_ip.is_full_out = '0';
wait until falling_edge(clk);
for x in 0 to 1000 loop
buffer_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, buffer_to_socbridge_driver.payload'length));
ip_to_socbridge_driver.payload <= std_logic_vector(to_unsigned(input, ip_to_socbridge_driver.payload'length));
input := input + 1 mod 256;
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until rising_edge(clk) and socbridge_driver_to_ip.is_full_out = '0';
wait until falling_edge(clk);
end loop;
wait;

View File

@ -1,17 +1,17 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
library ganimede;
use ganimede.io_types.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
entity control_unit is
port (
clk, rst : in std_logic;
cpu_to_controller : in cpu_to_controller_t;
controller_to_cpu : out controller_to_cpu_t;
socbridge_driver_to_controller : in socbridge_driver_to_controller_t;
controller_to_socbridge_driver : out controller_to_socbridge_driver_t
clk, rst : in std_logic;
manager_to_controller : in manager_to_controller_t;
controller_to_manager : out controller_to_manager_t;
drivers_to_controller : in drivers_to_controller_t;
controller_to_drivers : out controller_to_drivers_t
);
end entity control_unit;
@ -26,49 +26,59 @@ architecture behave of control_unit is
end record state_t;
signal state: state_t;
shared variable ored: std_logic;
signal ored: std_logic;
begin
comb_proc: process(cpu_to_controller, socbridge_driver_to_controller, state)
comb_proc: process(manager_to_controller, drivers_to_controller, state)
variable local_ored : std_logic;
begin
ored := '0';
local_ored := '0';
ready_reduction: for i in 0 to number_of_drivers - 1 loop
ored := ored or socbridge_driver_to_controller.is_active;
local_ored := local_ored or drivers_to_controller.socbridge.is_active;
end loop ready_reduction;
controller_to_socbridge_driver.request <= state.curr_driver;
controller_to_socbridge_driver.address <= state.address;
controller_to_socbridge_driver.seq_mem_access_count <= state.seq_mem_access_count;
controller_to_cpu.ready <= state.ready;
controller_to_socbridge_driver.instruction <= state.instruction;
ored <= local_ored;
controller_to_drivers.socbridge.request <= state.curr_driver;
controller_to_drivers.socbridge.address <= state.address;
controller_to_drivers.socbridge.seq_mem_access_count <= state.seq_mem_access_count;
controller_to_manager.ready <= state.ready;
controller_to_drivers.socbridge.instruction <= state.instruction;
end process comb_proc;
sync_proc: process(clk, state)
begin
if rising_edge(clk) then
if rst = '1' then
state <= ((others => '0'),
0,
'0',
'1',
NO_OP);
state.address <= (others => '0');
state.seq_mem_access_count <= 0;
state.curr_driver <= '0';
state.ready <= '1';
state.instruction <= NO_OP;
else
state.ready <= not ored;
if ored = '0' then
state.address <= cpu_to_controller.address;
state.seq_mem_access_count <= cpu_to_controller.seq_mem_access_count;
state.curr_driver <= cpu_to_controller.driver_id(0);
with cpu_to_controller.cmd select
state.instruction <= WRITE when "01",
READ when "10",
NO_OP when others;
-- Make sure to tell the management unit instruction is done
if ored = '0' and state.ready = '0' then
state.ready <= '1';
else
state <= ((others => '0'),
0,
'0',
'1',
NO_OP);
end if;
controller_to_manager.done <= ored;
if ored = '0' then
state.address <= manager_to_controller.address;
state.seq_mem_access_count <= manager_to_controller.seq_mem_access_count;
state.curr_driver <= manager_to_controller.driver_id(0);
if manager_to_controller.cmd = "01" then
state.instruction <= WRITE;
elsif manager_to_controller.cmd = "10" then
state.instruction <= READ;
else
state.instruction <= NO_OP;
end if;
else
state.address <= (others => '0');
state.seq_mem_access_count <= 0;
state.curr_driver <= '0';
state.ready <= '1';
state.instruction <= NO_OP;
end if;
end if;
end if;

View File

@ -2,9 +2,9 @@ library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use IEEE.numeric_std.all;
library ganimede;
use ganimede.io_types.all;
library controller;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_controller;
entity control_unit_tb is
end entity control_unit_tb;
@ -14,14 +14,14 @@ architecture tb of control_unit_tb is
constant cycle: Time := 10 ns;
signal clock: std_logic := '0';
signal reset: std_logic := '0';
signal cpu_to_controller: cpu_to_controller_t := (
signal manager_to_controller: manager_to_controller_t := (
(others => '0'),
(others => '0'),
0,
"00");
signal socbridge_driver_to_controller: socbridge_driver_to_controller_t := (is_active => '0');
signal controller_to_cpu: controller_to_cpu_t;
signal controller_to_socbridge_driver: controller_to_socbridge_driver_t;
signal drivers_to_controller: drivers_to_controller_t := (socbridge => (is_active => '0'));
signal controller_to_manager: controller_to_manager_t;
signal controller_to_drivers: controller_to_drivers_t;
signal current_driver : std_logic_vector(0 downto 0) := "0";
shared variable word_counter: natural := 0;
@ -36,25 +36,25 @@ begin
wait;
end process clock_proc;
control_unit_inst: entity controller.control_unit
control_unit_inst: entity gan_controller.control_unit
port map(
clk => clock,
rst => reset,
cpu_to_controller => cpu_to_controller,
controller_to_cpu => controller_to_cpu,
socbridge_driver_to_controller => socbridge_driver_to_controller,
controller_to_socbridge_driver => controller_to_socbridge_driver
manager_to_controller => manager_to_controller,
controller_to_manager => controller_to_manager,
drivers_to_controller => drivers_to_controller,
controller_to_drivers => controller_to_drivers
);
stimulus_proc: process
begin
wait for cycle;
cpu_to_controller.driver_id <= "1";
socbridge_driver_to_controller.is_active <= '0';
cpu_to_controller.address <= x"F0F0F0F0";
cpu_to_controller.seq_mem_access_count <= 3;
cpu_to_controller.cmd <= "01";
manager_to_controller.driver_id <= "1";
drivers_to_controller.socbridge.is_active <= '0';
manager_to_controller.address <= x"F0F0F0F0";
manager_to_controller.seq_mem_access_count <= 3;
manager_to_controller.cmd <= "01";
word_counter := 3;
wait for cycle;
current_driver <= "1";
@ -65,7 +65,7 @@ begin
report "words remaining are " & integer'image(i);
end loop for_loop;
socbridge_driver_to_controller.is_active <= '0';
drivers_to_controller.socbridge.is_active <= '0';
report "Stim process done";
wait;
end process stimulus_proc;
@ -76,9 +76,9 @@ begin
wait for cycle;
wait for cycle;
assert controller_to_socbridge_driver.request = '1' report "Incorrect driver_id from control_unit" severity error;
assert controller_to_socbridge_driver.address = x"F0F0F0F0" report "Incorrect address from control_unit" severity error;
assert controller_to_socbridge_driver.instruction = WRITE report "Incorrect memory op from control_unit" severity error;
assert controller_to_drivers.socbridge.request = '1' report "Incorrect driver_id from control_unit" severity error;
assert controller_to_drivers.socbridge.address = x"F0F0F0F0" report "Incorrect address from control_unit" severity error;
assert controller_to_drivers.socbridge.instruction = WRITE report "Incorrect memory op from control_unit" severity error;
wait for 5 * cycle;
reset <= '1';

47
src/dummy_ip/dummy_ip.vhd Normal file
View File

@ -0,0 +1,47 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
entity dummy_ip is
generic (
data_width : natural := 8
);
port (
clk, rst : in std_logic;
ready_in, valid_in : in std_logic;
ready_out, valid_out : out std_logic;
data_in : in std_logic_vector(data_width - 1 downto 0);
data_out : out std_logic_vector(data_width - 1 downto 0)
);
end entity dummy_ip;
architecture rtl of dummy_ip is
signal incremented_in : std_logic_vector(data_width - 1 downto 0);
signal valid_out_signal : std_logic;
begin
valid_out <= valid_out_signal;
data_out <= incremented_in;
seq_proc: process(clk, data_in, ready_in, valid_in)
begin
if rst = '1' then
incremented_in <= (others => '0');
valid_out_signal <= '0';
ready_out <= '1';
else
if rising_edge(clk) then
if valid_in = '1' then
valid_out_signal <= '1';
ready_out <= '0';
elsif valid_out_signal = '1' and ready_in = '1' then
valid_out_signal <= '0';
ready_out <= '1';
end if;
elsif falling_edge(clk)then
incremented_in <= std_logic_vector(unsigned(data_in) + 1);
end if;
end if;
end process seq_proc;
end architecture rtl;

View File

@ -0,0 +1,220 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use ieee.numeric_std.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
library techmap;
use techmap.gencomp.all;
entity fifo_buffer is
generic (
buffer_size : natural := 64;
tech : integer := 0;
data_width : natural := 8
);
port (
rst, in_clk, out_clk : in std_logic;
ready_in : in std_logic;
ready_out : out std_logic;
valid_in : in std_logic;
valid_out : out std_logic;
data_in : in std_logic_vector(data_width - 1 downto 0);
data_out : out std_logic_vector(data_width - 1 downto 0);
used_slots : out integer range 0 to buffer_size
);
end entity fifo_buffer;
architecture rtl of fifo_buffer is
constant address_bits : natural := integer(ceil(log2(real(buffer_size))));
signal read_pointer : std_logic_vector(address_bits - 1 downto 0);
signal write_pointer : std_logic_vector(address_bits - 1 downto 0);
signal write_signal : std_logic;
signal buffer_full : std_logic;
signal buffer_empty : std_logic;
signal inverted_in_clock : std_logic;
signal customout : std_logic_vector(0 downto 0); -- techmap needs customout and it is does not have a default value for some reason
begin
techmap_ram_inst : entity techmap.syncram_2p
generic map(tech => tech,
abits => address_bits,
dbits => data_width,
sepclk => 1
)
port map(
rclk => out_clk,
renable => '1',
raddress => read_pointer,
dataout => data_out,
wclk => inverted_in_clock,
write => write_signal,
waddress => write_pointer,
datain => data_in,
customclk => in_clk, --NOTE: No clue what this does but it has to be set to something
customout => customout
);
inverted_in_clock <= not in_clk;
comb_proc: process(write_pointer, read_pointer, buffer_full, valid_in, rst)
variable write_pointer_inc : unsigned(address_bits - 1 downto 0);
begin
if write_pointer >= read_pointer then
used_slots <= to_integer(unsigned(write_pointer) - unsigned(read_pointer));
else
used_slots <= buffer_size - to_integer(unsigned(read_pointer)) + to_integer(unsigned(write_pointer));
end if;
ready_out <= not buffer_full;
write_signal <= (valid_in and not buffer_full) or rst;
write_pointer_inc := unsigned(write_pointer) + 1;
customout <= "0";
if write_pointer_inc = unsigned(read_pointer) then
buffer_full <= '1';
else
buffer_full <= '0';
end if;
if write_pointer = read_pointer then
buffer_empty <= '1';
else
buffer_empty <= '0';
end if;
end process comb_proc;
seq_proc: process(rst, in_clk, out_clk, buffer_full, valid_in, ready_in, buffer_empty, write_pointer, read_pointer)
begin
if rst = '1' then
read_pointer <= (others => '0');
write_pointer <= (others => '0');
else
if rising_edge(in_clk) then
if valid_in = '1' and buffer_full = '0'then
write_pointer <= std_logic_vector(unsigned(write_pointer) + 1);
end if;
end if;
if rising_edge(out_clk) then
if ready_in = '1' and buffer_empty = '0' then
read_pointer <= std_logic_vector(unsigned(read_pointer) + 1);
valid_out <= '1';
else
valid_out <= '0';
end if;
end if;
end if;
end process seq_proc;
end architecture rtl;
--library IEEE;
--use IEEE.std_logic_1164.all;
--use IEEE.MATH_REAL.all;
--use ieee.numeric_std.all;
--library gan_ganimede;
--use gan_ganimede.io_types.all;
--library techmap;
--use techmap.gencomp.all;
--
--entity fifo_buffer is
-- generic (
-- buffer_size : natural := 64;
-- tech : integer := 0;
-- data_width : natural := 8
-- );
-- port (
-- rst, in_clk, out_clk : in std_logic;
-- ready_in : in std_logic;
-- ready_out : out std_logic;
-- valid_in : in std_logic;
-- valid_out : out std_logic;
-- data_in : in std_logic_vector(data_width - 1 downto 0);
-- data_out : out std_logic_vector(data_width - 1 downto 0)
-- );
--end entity fifo_buffer;
--
--architecture rtl of fifo_buffer is
-- constant address_bits : natural := integer(ceil(log2(real(buffer_size))));
-- signal read_pointer : std_logic_vector(address_bits - 1 downto 0);
-- signal write_pointer : std_logic_vector(address_bits - 1 downto 0);
-- signal write_signal : std_logic;
-- signal buffer_full : std_logic;
-- signal buffer_empty : std_logic;
-- signal inverted_in_clock : std_logic;
-- signal customout : std_logic_vector(0 downto 0); -- techmap needs customout and it is does not have a default value for some reason
--begin
--
---- DECLARATION OF NX_SYNCRAM
----entity nx_syncram_be is
---- generic ( abits : integer := 6;
---- dbits : integer := 8
---- );
---- port (
---- clk : in std_ulogic;
---- address : in std_logic_vector (abits -1 downto 0);
---- datain : in std_logic_vector (dbits -1 downto 0);
---- dataout : out std_logic_vector (dbits -1 downto 0);
---- enable : in std_logic_vector (dbits/8-1 downto 0);
---- write : in std_logic_vector (dbits/8-1 downto 0)
---- );
----end;
--
-- techmap_ram_inst : entity techmap.syncram_2p
-- generic map(tech => tech,
-- abits => address_bits,
-- dbits => data_width,
-- sepclk => 1
-- )
-- port map(
-- rclk => out_clk,
-- renable => '1',
-- raddress => read_pointer,
-- dataout => data_out,
-- wclk => inverted_in_clock,
-- write => write_signal,
-- waddress => write_pointer,
-- datain => data_in,
-- customclk => in_clk, --NOTE: No clue what this does but it has to be set to something
-- customout => customout
-- );
--
-- inverted_in_clock <= not in_clk;
--comb_proc: process(write_pointer, read_pointer, buffer_full, valid_in, rst)
-- variable write_pointer_inc : unsigned(address_bits - 1 downto 0);
--begin
-- ready_out <= not buffer_full;
-- write_signal <= (valid_in and not buffer_full) or rst;
-- write_pointer_inc := unsigned(write_pointer) + 1;
-- customout <= "0";
-- if write_pointer_inc = unsigned(read_pointer) then
-- buffer_full <= '1';
-- else
-- buffer_full <= '0';
-- end if;
-- if write_pointer = read_pointer then
-- buffer_empty <= '1';
-- else
-- buffer_empty <= '0';
-- end if;
--end process comb_proc;
--
--seq_proc: process(rst, in_clk, out_clk, buffer_full, valid_in, ready_in, buffer_empty, write_pointer, read_pointer)
--begin
-- if rst = '1' then
-- read_pointer <= (others => '0');
-- write_pointer <= (others => '0');
-- else
-- if rising_edge(in_clk) and valid_in = '1' and buffer_full = '0' then
-- write_pointer <= std_logic_vector(unsigned(write_pointer) + 1);
-- end if;
-- if falling_edge(out_clk) then
-- if ready_in = '1' and buffer_empty = '0' then
-- read_pointer <= std_logic_vector(unsigned(read_pointer) + 1);
-- valid_out <= '1';
-- else
-- valid_out <= '0';
-- end if;
-- end if;
-- end if;
--end process seq_proc;
--
--end architecture rtl;

View File

@ -0,0 +1,74 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use ieee.numeric_std.all;
entity fifo_deserializer is
generic (
output_width : natural := 8;
input_width : natural := 8;
endianess : integer := 0 -- 0: little endian, 1: big endian
);
port (
rst, clk : in std_logic;
ready_in : in std_logic;
ready_out : out std_logic;
valid_in : in std_logic;
valid_out : out std_logic;
data_in : in std_logic_vector(input_width - 1 downto 0);
data_out : out std_logic_vector(output_width - 1 downto 0)
);
end entity fifo_deserializer;
architecture rtl of fifo_deserializer is
constant out_over_in : natural := output_width / input_width - 1;
type state_t is record
count : integer;
data : std_logic_vector(output_width - 1 downto 0);
full_word : std_logic;
prev_ready : std_logic;
end record state_t;
signal st : state_t;
begin
comb_proc: process(rst,clk,valid_in,ready_in,data_in,st)
begin
if st.full_word = '1' and ready_in = '1' then
valid_out <= '1';
else
valid_out <= '0';
end if;
ready_out <= ready_in;
data_out <= st.data;
end process comb_proc;
seq_proc: process(clk, rst)
begin
if rst = '1' then
st.count <= 0;
st.data <= (others => '0');
st.full_word <= '0';
st.prev_ready <= '0';
elsif (rising_edge(clk)) then
st.prev_ready <= ready_in;
if valid_in = '1' and st.prev_ready = '1' then
if endianess = 0 then
st.data((out_over_in + 1 - st.count) * input_width - 1 downto (out_over_in - st.count) * input_width) <= data_in;
else
st.data((st.count + 1) * input_width - 1 downto st.count * input_width) <= data_in;
end if;
end if;
if st.full_word = '1' and ready_in = '1' then
st.full_word <= '0';
end if;
if st.count = out_over_in and valid_in = '1' then
st.full_word <= '1';
st.count <= 0;
elsif valid_in = '1' then
st.count <= st.count + 1;
end if;
end if;
end process seq_proc;
end architecture rtl;

View File

@ -0,0 +1,76 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use ieee.numeric_std.all;
entity fifo_serializer is
generic (
output_width : natural := 8;
input_width : natural := 8;
endianess : integer := 0 -- 0: little endian, 1: big endian
);
port (
rst, clk : in std_logic;
ready_in : in std_logic;
ready_out : out std_logic;
valid_in : in std_logic;
valid_out : out std_logic;
data_in : in std_logic_vector(input_width - 1 downto 0);
data_out : out std_logic_vector(output_width - 1 downto 0)
);
end entity fifo_serializer;
architecture rtl of fifo_serializer is
constant in_over_out : natural := input_width / output_width - 1;
type state_t is record
count : integer;
valid : std_logic;
data : std_logic_vector(input_width - 1 downto 0);
end record state_t;
signal st : state_t;
begin
comb_proc: process(rst,clk,valid_in,ready_in,data_in,st)
begin
if st.valid = '0' and valid_in = '0' then
ready_out <= '1';
else
ready_out <= '0';
end if;
valid_out <= st.valid;
if st.count <= in_over_out and st.valid = '1' then
if endianess = 0 then
data_out <= st.data((input_width - st.count * output_width) - 1 downto input_width - (st.count + 1) * output_width);
else
data_out <= st.data((st.count + 1) * output_width - 1 downto st.count * output_width);
end if;
else
data_out <= (others => '0');
end if;
end process comb_proc;
seq_proc: process(clk, rst)
begin
if rst = '1' then
st.count <= 0;
st.valid <= '0';
st.data <= (others => '0');
elsif (rising_edge(clk)) then
if valid_in = '1' and st.count = 0 then
st.valid <= '1';
st.data <= data_in;
elsif valid_in = '1' and st.count = in_over_out and ready_in = '1' then
st.count <= 0;
st.valid <= '1';
st.data <= data_in;
elsif st.count = in_over_out and ready_in = '1' then
st.valid <= '0';
st.count <= 0;
elsif ready_in = '1' and st.valid = '1' then
st.count <= st.count + 1;
end if;
end if;
end process seq_proc;
end architecture rtl;

1
src/ganimede/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
ganimede

View File

@ -1,73 +1,115 @@
library IEEE;
use IEEE.std_logic_1164.all;
library work;
use work.io_types.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library gan_controller;
library gan_manager;
use gan_manager.management_types.all;
library gan_buffer;
entity ganimede is
entity ganimede_toplevel is
port (
clk : in std_logic;
reset : in std_logic;
ext_interface_in : in ext_interface_in_t;
ext_interface_out : out ext_interface_out_t;
int_interface_in : in int_interface_in_t;
int_interface_out : out int_interface_out_t
clk : in std_logic;
rst : in std_logic;
ext_to_ganimede : in ext_to_ganimede_t;
ganimede_to_ext : out ganimede_to_ext_t;
ip_to_ganimede : in ip_to_ganimede_t;
ganimede_to_ip : out ganimede_to_ip_t
);
end entity ganimede;
architecture rtl of ganimede is
end entity ganimede_toplevel;
architecture rtl of ganimede_toplevel is
--- SIGNAL DECLERATIONS ---
signal gan_int_interface_in : int_interface_in_t;
signal gan_int_interface_out : int_interface_out_t;
signal gan_ext_interface_in : ext_interface_in_t;
signal gan_ext_interface_out : ext_interface_out_t;
signal drivers_to_controller : drivers_to_controller_t;
signal controller_to_drivers : controller_to_drivers_t;
signal manager_to_controller : manager_to_controller_t;
signal controller_to_manager : controller_to_manager_t;
signal socbridge_driver_to_manager : socbridge_driver_to_manager_t;
signal manager_to_socbridge_driver : manager_to_socbridge_driver_t;
signal socbridge_driver_to_buffer : fifo_interface_t;
signal buffer_to_socbridge_driver : fifo_interface_t;
signal socbridge_clk : std_logic;
signal used_slots : integer;
--signal gan_socbridge_WE_in : std_logic;
--signal gan_socbridge_WE_out : std_logic;
--signal gan_socbridge_is_full_in : std_logic;
--signal gan_socbridge_is_full_out : std_logic;
--- COMPONENT DECLERATIONS ---
--component fifo is
-- generic(
-- WIDTH : positive;
-- DEPTH : positive
-- );
-- port(
-- clk, reset, read_enable, write_enable : in std_logic;
-- is_full, is_empty : out std_logic;
-- data_in : in std_logic_vector(WIDTH - 1 downto 0);
-- data_out : out std_logic_vector(WIDTH - 1 downto 0)
-- );
--end component;
component socbridge_driver is
port(
clk : in std_logic;
reset : in std_logic;
ext_in : in ext_to_socbridge_driver_t;
ext_out : out socbridge_driver_to_ext_t;
int_in : out buffer_to_socbridge_driver_t;
int_out : in socbridge_driver_to_buffer_t
);
end component;
begin
--- CONNECT EXTERNAL SIGNALS TO INTERNAL CONNECTIONS ---
gan_int_interface_in <= int_interface_in;
int_interface_out <= gan_int_interface_out;
gan_ext_interface_in <= ext_interface_in;
ext_interface_out <= gan_ext_interface_out;
--- DRIVER INSTANTIATION ---
socbridge_driver_inst: socbridge_driver
port map(
clk => clk,
reset => reset,
ext_in => gan_ext_interface_in.socbridge,
ext_out => gan_ext_interface_out.socbridge,
int_in => gan_int_interface_in.socbridge,
int_out => gan_int_interface_out.socbridge
);
--- DRIVER INSTANTIATION ---
socbridge_driver_inst: entity gan_socbridge.socbridge_driver
port map(
clk => clk,
socbridge_clk => socbridge_clk,
rst => rst,
controller_to_socbridge_driver => controller_to_drivers.socbridge,
socbridge_driver_to_controller => drivers_to_controller.socbridge,
manager_to_socbridge_driver => manager_to_socbridge_driver,
socbridge_driver_to_manager => socbridge_driver_to_manager,
ext_to_socbridge_driver => ext_to_ganimede.socbridge,
socbridge_driver_to_ext => ganimede_to_ext.socbridge,
ip_to_socbridge_driver => buffer_to_socbridge_driver,
socbridge_driver_to_ip => socbridge_driver_to_buffer,
used_slots => used_slots
);
controller_inst: entity gan_controller.control_unit
port map(
clk => clk,
rst => rst,
manager_to_controller => manager_to_controller,
controller_to_manager => controller_to_manager,
drivers_to_controller => drivers_to_controller,
controller_to_drivers => controller_to_drivers
);
manager_inst: entity gan_manager.management_unit
port map(
clk => clk,
rst => rst,
manager_to_controller => manager_to_controller,
controller_to_manager => controller_to_manager,
manager_to_socbridge_driver => manager_to_socbridge_driver,
socbridge_driver_to_manager => socbridge_driver_to_manager
);
fifo_buffer_to_ip_inst : entity gan_buffer.fifo_buffer
generic map (
buffer_size => 2*1024
)
port map(
in_clk => socbridge_clk,
out_clk => clk,
rst => rst,
ready_in => ip_to_ganimede.socbridge.ready,
ready_out => buffer_to_socbridge_driver.ready,
valid_in => socbridge_driver_to_buffer.valid,
valid_out => ganimede_to_ip.socbridge.valid,
data_in => socbridge_driver_to_buffer.data,
data_out => ganimede_to_ip.socbridge.data
);
fifo_buffer_from_ip_inst : entity gan_buffer.fifo_buffer
generic map (
buffer_size => 2*1024
)
port map(
in_clk => clk,
out_clk => socbridge_clk,
rst => rst,
ready_in => socbridge_driver_to_buffer.ready,
ready_out => ganimede_to_ip.socbridge.ready,
valid_in => ip_to_ganimede.socbridge.valid,
valid_out => buffer_to_socbridge_driver.valid,
data_in => ip_to_ganimede.socbridge.data,
data_out => buffer_to_socbridge_driver.data,
used_slots => used_slots
);
--- LATER WE ADD OPTIMIZATIONS HERE ---

View File

@ -0,0 +1,110 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library gan_controller;
entity ganimede_tb is
end entity ganimede_tb;
architecture tb of ganimede_tb is
signal done : boolean := false;
constant CLK_PERIOD : Time := 10 ns;
constant SIMULATION_CYCLE_COUNT : integer := 2000;
signal clk, rst : std_logic := '0';
signal controller_to_socbridge_driver_cmd : instruction_command_t;
signal controller_to_socbridge_driver_address : std_logic_vector(31 downto 0);
signal cmd_size : positive;
signal ext_to_ganimede : ext_to_ganimede_t := (socbridge => (
payload => (others => '0'),
control => (others => '0')
));
signal ganimede_to_ext : ganimede_to_ext_t;
signal ganimede_to_ip : ganimede_to_ip_t;
signal ganimede_to_manager : controller_to_manager_t;
signal manager_to_ganimede : manager_to_controller_t := (
driver_id => (others => '0'),
address => (others => '0'),
seq_mem_access_count => 0,
cmd => (others => '0')
);
signal ip_to_ganimede : ip_to_ganimede_t := (socbridge => (
payload => (others => '0'),
write_enable_out => '0',
is_full_in => '0'
));
signal manager_to_controller: manager_to_controller_t := (
driver_id => (others => '0'),
address => (others => '0'),
seq_mem_access_count => 0,
cmd => "00"
);
signal drivers_to_controller: drivers_to_controller_t := (socbridge => (is_active => '0'));
signal controller_to_manager: controller_to_manager_t;
signal controller_to_drivers: controller_to_drivers_t;
begin
ganimede_inst: entity gan_ganimede.ganimede_toplevel
port map(
clk => clk,
rst => rst,
manager_to_ganimede => manager_to_ganimede,
ganimede_to_manager => ganimede_to_manager,
ext_to_ganimede => ext_to_ganimede,
ganimede_to_ext => ganimede_to_ext,
ip_to_ganimede => ip_to_ganimede,
ganimede_to_ip => ganimede_to_ip
);
ext_to_ganimede.socbridge.control(1) <= clk;
real_clk_proc: process
variable cycle_count :integer := 0;
begin
while (not done) and (cycle_count < MAX_CYCLE_COUNT) loop
clk <= not clk;
wait for CLK_PERIOD / 2;
end loop;
wait;
end process real_clk_proc;
stimulus_proc: process
begin
report "Starting Simulation Stimulus!";
done <= false;
rst <= '1';
wait for 3 * CLK_PERIOD;
report "Reset grace period ended, starting stimulus...";
rst <= '0';
report "Test finished, ending simultaion...";
done <= true;
wait;
end process stimulus_proc;
internal_stimulus: process
variable input : positive := 1;
begin
ip_to_ganimede.socbridge.is_full_in <= '0';
ip_to_ganimede.socbridge.write_enable_out <= '0';
wait for 3 * CLK_PERIOD;
-- stimulus goes here
ip_to_ganimede.socbridge.write_enable_out <= '1';
ip_to_ganimede.socbridge.payload <= std_logic_vector(to_unsigned(input, ip_to_ganimede.socbridge.payload'length));
input := input + 1 mod 256;
wait until rising_edge(clk) and ganimede_to_ip.socbridge.is_full_out = '0';
wait until falling_edge(clk);
for x in 0 to 1000 loop
ip_to_ganimede.socbridge.payload <= std_logic_vector(to_unsigned(input, ip_to_ganimede.socbridge.payload'length));
input := input + 1 mod 256;
wait until rising_edge(clk) and ganimede_to_ip.socbridge.is_full_out = '0';
wait until falling_edge(clk);
end loop;
wait;
end process internal_stimulus;
end architecture tb;

View File

@ -5,64 +5,58 @@ use IEEE.MATH_REAL.all;
package io_types is
--- CONSTANTS ---
constant number_of_drivers: natural := 1;
constant address_width: natural := 32;
constant seq_vector_length: natural := 8;
constant inst_word_width: natural := 2;
constant number_of_drivers : natural := 1;
constant address_width : natural := 32;
constant inst_word_width : natural := 2;
constant fifo_width : natural := 8;
--- STANDARD TYPES ---
type instruction_command_t is (NO_OP, READ, WRITE);
type fifo_interface_t is record
ready, valid : std_logic;
data : std_logic_vector(fifo_width - 1 downto 0);
end record fifo_interface_t;
type ext_protocol_def_t is record
name: string (1 to 20);
payload_width: natural;
control_width_in, control_width_out: natural;
payload_width : natural;
control_width_in, control_width_out : natural;
end record ext_protocol_def_t;
type interface_inst_t is record
socbridge: ext_protocol_def_t;
socbridge : ext_protocol_def_t;
end record interface_inst_t;
--- CONTROL UNIT ---
type cpu_to_controller_t is record
driver_id: std_logic_vector(number_of_drivers - 1 downto 0);
address: std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: integer;
cmd: std_logic_vector(1 downto 0);
end record cpu_to_controller_t;
type manager_to_controller_t is record
driver_id : std_logic_vector(number_of_drivers - 1 downto 0);
address : std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count : integer;
cmd : std_logic_vector(1 downto 0); --Noop: 00; Write: 01; Read: 10
end record manager_to_controller_t;
type controller_to_cpu_t is record
ready: std_logic;
end record controller_to_cpu_t;
--type controller_to_socbridge_driver_t is record
-- driver_id: std_logic_vector(number_of_drivers - 1 downto 0);
-- address: std_logic_vector(address_width - 1 downto 0);
-- seq_mem_access_count: integer;
-- instruction: instruction_command_t;
--end record controller_to_socbridge_driver_t;
--type socbridge_driver_to_controller_t is record
-- active_driver: std_logic_vector(number_of_drivers - 1 downto 0);
--end record socbridge_driver_to_controller_t;
type socbridge_driver_to_controller_t is record
is_active : std_logic;
end record socbridge_driver_to_controller_t;
type controller_to_socbridge_driver_t is record
request: std_logic;
address: std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count: integer;
instruction: instruction_command_t;
end record controller_to_socbridge_driver_t;
type controller_to_manager_t is record
ready, done : std_logic;
end record controller_to_manager_t;
--- PROTOCOL INFORMATION ---
constant interface_inst : interface_inst_t := (
socbridge => ("SoCBridge ", 8, 2, 2)
);
);
--- AUTOGENERATED TYPES ---
type socbridge_driver_to_controller_t is record
is_active : std_logic;
end record socbridge_driver_to_controller_t;
type controller_to_socbridge_driver_t is record
request : std_logic;
address : std_logic_vector(address_width - 1 downto 0);
seq_mem_access_count : integer;
instruction : instruction_command_t;
end record controller_to_socbridge_driver_t;
type ext_to_socbridge_driver_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0);
@ -73,30 +67,32 @@ package io_types is
control : STD_LOGIC_VECTOR(interface_inst.socbridge.control_width_in - 1 downto 0);
end record socbridge_driver_to_ext_t;
type socbridge_driver_to_buffer_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
write_enable_in, is_full_out : std_logic;
end record socbridge_driver_to_buffer_t;
subtype socbridge_driver_to_ip_t is fifo_interface_t;
type buffer_to_socbridge_driver_t is record
payload : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0);
write_enable_out, is_full_in : std_logic;
end record buffer_to_socbridge_driver_t;
subtype ip_to_socbridge_driver_t is fifo_interface_t;
type ext_interface_in_t is record
socbridge : ext_to_socbridge_driver_t;
end record ext_interface_in_t;
type controller_to_drivers_t is record
socbridge : controller_to_socbridge_driver_t;
end record controller_to_drivers_t;
type ext_interface_out_t is record
type drivers_to_controller_t is record
socbridge : socbridge_driver_to_controller_t;
end record drivers_to_controller_t;
type ext_to_ganimede_t is record
socbridge : ext_to_socbridge_driver_t;
end record ext_to_ganimede_t;
type ganimede_to_ext_t is record
socbridge : socbridge_driver_to_ext_t;
end record ext_interface_out_t;
end record ganimede_to_ext_t;
type int_interface_out_t is record
socbridge : socbridge_driver_to_buffer_t;
end record int_interface_out_t;
type ganimede_to_ip_t is record
socbridge : socbridge_driver_to_ip_t;
end record ganimede_to_ip_t;
type int_interface_in_t is record
socbridge : buffer_to_socbridge_driver_t;
end record int_interface_in_t;
type ip_to_ganimede_t is record
socbridge : ip_to_socbridge_driver_t;
end record ip_to_ganimede_t;
end package io_types;

65
src/gantry.toml Normal file
View File

@ -0,0 +1,65 @@
title = "ganimede"
createdAt = "2025-03-14"
maintainer = ""
email = ""
version = "0.0.1"
[libraries.gan_socbridge]
vhdl-version = "93c"
path = "socbridge"
[libraries.gan_manager]
vhdl-version = "93c"
path = "manager"
[libraries.gan_ganimede]
vhdl-version = "93c"
path = "ganimede"
[libraries.gan_controller]
vhdl-version = "93c"
path = "controller"
[libraries.gan_dummy_ip]
vhdl-version = "93c"
path = "dummy_ip"
[libraries.gan_testbenches]
vhdl-version = "93c"
path = "control_socbridge_merge"
[libraries.gaisler]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/gaisler"
[libraries.grlib]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/grlib"
[libraries.gr_socbridge_tb]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/verification/socbridge"
[libraries.techmap]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/techmap"
[libraries.opencores]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/opencores"
[libraries.eth]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/eth"
[libraries.micron]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/lib/micron"
[libraries.ahb2ahb]
vhdl-version = "93c"
path = "grlib-com-nx-2024.4-b4295/verification/ahb2ahb"
[libraries.gan_buffer]
vhdl-version = "93c"
path = "fifo_buffer"

View File

@ -0,0 +1,107 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use ieee.numeric_std.all;
library gan_manager;
use gan_manager.management_types.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
entity management_unit is
port (
clk, rst : in std_logic;
manager_to_controller : out manager_to_controller_t;
controller_to_manager : in controller_to_manager_t;
socbridge_driver_to_manager : in socbridge_driver_to_manager_t;
manager_to_socbridge_driver : out manager_to_socbridge_driver_t
);
end entity management_unit;
architecture rtl of management_unit is
signal manager_state : manager_state_t;
signal write_address : manager_word_t;
signal read_address : manager_word_t;
-- Address indexing whole words, not bytes
signal word_address : natural;
signal cmd : std_logic_vector(1 downto 0);
function pack(word: manager_word_t) return std_logic_vector is
begin
return word.address & word.size & word.command & word.reserved;
end function;
function unpack(word: std_logic_vector) return manager_word_t is
variable val : manager_word_t;
begin
val.address := word(31 downto 10);
val.size := word(9 downto 6);
val.command := word(5 downto 3);
val.reserved := word(2 downto 0);
return val;
end function;
begin
read_address <= manager_state.memory(0);
write_address <= manager_state.memory(1);
comb_proc: process(controller_to_manager, socbridge_driver_to_manager,manager_state, cmd)
variable local_word_address : natural;
begin
local_word_address := to_integer(shift_right(unsigned(socbridge_driver_to_manager.address), address_shift)) mod mem_words;
-- Read data from manager to SoCBridge driver
manager_to_socbridge_driver.ready <= '1';
manager_to_socbridge_driver.data <= pack(manager_state.memory(local_word_address));
manager_to_socbridge_driver.valid <= '1';
word_address <= local_word_address;
manager_to_controller.cmd <= cmd;
end process comb_proc;
-- tre sorters sätt att avsluta en skrivning:
-- timeout om vi villha det
-- en lastbit genooom axi interface
-- vi har fått all data vi begärde.
seq_proc: process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
manager_state <= manager_state_reset_val;
else
-- Write data from SoCBridge driver to address
if socbridge_driver_to_manager.valid = '1' then
manager_state.memory(word_address) <= unpack(socbridge_driver_to_manager.data);
if socbridge_driver_to_manager.address = read_address_index
or socbridge_driver_to_manager.address = write_address_index then
-- CLEAR BUFFER TO IP CORE
end if;
-- Is the controller done executing an instruction
elsif controller_to_manager.done = '1' and cmd = "10" then
manager_state.memory(0) <= manager_word_reset_val;
elsif controller_to_manager.done = '1' and cmd = "01" then
manager_state.memory(1) <= manager_word_reset_val;
end if;
-- Is there a read instruction in memory
if pack(read_address) /= empty_word and controller_to_manager.ready = '1' and controller_to_manager.done = '0' then
manager_to_controller.address <= read_address.address & "0000000000";
manager_to_controller.driver_id <= "1"; -- Only supprts one driver at present
manager_to_controller.seq_mem_access_count <= 2**to_integer(unsigned(read_address.size)) * 2**10;
cmd <= "10";
-- Is there a write instruction in memory
elsif pack(write_address) /= empty_word and controller_to_manager.ready = '1' and controller_to_manager.done = '0'then
manager_to_controller.address <= write_address.address & "0000000000";
manager_to_controller.driver_id <= "1"; -- Only supports one driver at present
manager_to_controller.seq_mem_access_count <= 2**to_integer(unsigned(write_address.size)) * 2**10;
cmd <= "01";
else
-- No instruction present in memory, all zeroes to control unit
manager_to_controller.address <= (others => '0');
manager_to_controller.driver_id <= "0"; -- Only supprts one driver at present
manager_to_controller.seq_mem_access_count <= 0;
cmd <= "00";
end if;
end if;
end if;
end process seq_proc;
end architecture rtl ;

View File

@ -0,0 +1,57 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
use IEEE.MATH_REAL.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
package management_types is
constant WORD_SIZE : natural := 32;
-- Amount to right shift addres to convert e.g 0x00000004 to 0x00000001 for 32-bit words
constant address_shift : natural := natural(CEIL(LOG2(real(WORD_SIZE) / real(8))));
type manager_word_t is record
address: std_logic_vector(21 downto 0);
size: std_logic_vector(3 downto 0);
command: std_logic_vector(2 downto 0);
reserved: std_logic_vector(WORD_SIZE - 1 - (22 + 4 + 3) downto 0);
end record manager_word_t;
constant empty_word : std_logic_vector(WORD_SIZE - 1 downto 0) := (others => '0');
constant mem_words : natural := 2;
constant address_mask : std_logic_vector(WORD_SIZE - 1 downto 0) := std_logic_vector(to_unsigned(mem_words - 1, 32));
type memory_t is array (0 to mem_words - 1) of manager_word_t;
-- Index in memory array where memory read address is kept.
-- Read is active while it is not all zero.
constant read_address_index : std_logic_vector(WORD_SIZE - 1 downto 0) := x"00000000";
-- Index in memory array where memory write address is kept.
-- Write is active while it is not all zero. Mutex with read address
constant write_address_index : std_logic_vector(WORD_SIZE - 1 downto 0) := x"00000001";
-- Status register for debugging
type manager_state_t is record
memory : memory_t;
data_out : manager_word_t;
end record manager_state_t;
-- reset value of status register
constant manager_word_reset_val : manager_word_t := (
address => (others =>'0'),
size => (others => '0'),
command => (others => '0'),
reserved => (others => '0')
);
constant manager_state_reset_val : manager_state_t := ((others => manager_word_reset_val), manager_word_reset_val);
type socbridge_driver_to_manager_t is record
address : std_logic_vector(WORD_SIZE - 1 downto 0);
data : std_logic_vector(WORD_SIZE - 1 downto 0);
valid: std_logic;
end record socbridge_driver_to_manager_t;
type manager_to_socbridge_driver_t is record
data : std_logic_vector(WORD_SIZE - 1 downto 0);
valid : std_logic;
ready : std_logic;
end record manager_to_socbridge_driver_t;
end package;

View File

@ -0,0 +1,124 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.MATH_REAL.all;
use IEEE.numeric_std.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_manager;
use gan_manager.management_types.all;
entity management_unit_tb is
end entity management_unit_tb;
architecture tb of management_unit_tb is
signal clk : std_logic := '0';
signal rst : std_logic;
signal manager_to_controller : manager_to_controller_t;
signal controller_to_manager : controller_to_manager_t := (ready => '0', done => '0');
signal socbridge_driver_to_manager : socbridge_driver_to_manager_t := (
address => (others => '0'),
data => (others => '0'),
valid => '0'
);
signal manager_to_socbridge_driver : manager_to_socbridge_driver_t;
constant halfcycle: Time := 5 ns;
constant cycle: Time := 2 * halfcycle;
function to_string ( a: std_logic_vector) return string is
variable b : string (1 to a'length) := (others => NUL);
variable stri : integer := 1;
begin
for i in a'range loop
b(stri) := std_logic'image(a((i)))(2);
stri := stri+1;
end loop;
return b;
end function;
begin
clock_proc: process
begin
for i in 0 to 50 loop
wait for halfcycle;
clk <= not clk;
end loop;
wait;
end process clock_proc;
management_unit_inst: entity gan_manager.management_unit
port map(
clk => clk,
rst => rst,
manager_to_controller => manager_to_controller,
controller_to_manager => controller_to_manager,
socbridge_driver_to_manager => socbridge_driver_to_manager,
manager_to_socbridge_driver => manager_to_socbridge_driver
);
tb_proc: process
begin
controller_to_manager.ready <= '0';
rst <= '1';
wait for cycle;
rst <= '0';
report "Testing write to 0x00000014";
socbridge_driver_to_manager.data <= x"FA0FA0FA";
socbridge_driver_to_manager.address <= x"00000014";
socbridge_driver_to_manager.valid <= '1';
wait for cycle;
socbridge_driver_to_manager.valid <= '0';
socbridge_driver_to_manager.data <= x"00000000";
socbridge_driver_to_manager.address <= x"00000000";
wait for halfcycle;
assert manager_to_socbridge_driver.data = x"FA0FA0FA" report "Write to address 0x00000005 failed! expected 0xFA0FA0FA but got " & natural'image(to_integer(unsigned(manager_to_socbridge_driver.data))) severity error;
wait for 5 * cycle;
report "Testing submission of write instruction of 10 words to address 0x40000000";
controller_to_manager.ready <= '1';
socbridge_driver_to_manager.data <= x"40000000";
socbridge_driver_to_manager.address <= x"00000004";
socbridge_driver_to_manager.valid <= '1';
wait for cycle;
socbridge_driver_to_manager.data <= x"0000000A";
socbridge_driver_to_manager.address <= x"00000008";
socbridge_driver_to_manager.address <= x"00000000";
socbridge_driver_to_manager.valid <= '1';
wait for cycle;
socbridge_driver_to_manager.valid <= '0';
socbridge_driver_to_manager.data <= x"00000000";
wait for cycle;
controller_to_manager.ready <= '1';
wait for halfcycle;
assert manager_to_controller.address = x"40000000" report "Controller got the wrong address! Expected 0x40000000 but got " & to_string(manager_to_controller.address) severity error;
assert manager_to_controller.cmd = "10" report "Controller got the wrong command! Expected 0b10 but got " & to_string(manager_to_controller.cmd) severity error;
assert manager_to_controller.seq_mem_access_count = 10 report "Controller got the wrong message size! expected 10 but got " & natural'image(manager_to_controller.seq_mem_access_count) severity error;
wait for 5 * cycle;
controller_to_manager.ready <= '0';
report "Testing submission of read instruction of 20 words from address 0x50000000";
socbridge_driver_to_manager.data <= x"50000000";
socbridge_driver_to_manager.address <= x"00000000";
socbridge_driver_to_manager.valid <= '1';
wait for cycle;
socbridge_driver_to_manager.data <= x"00000014";
socbridge_driver_to_manager.address <= x"00000008";
socbridge_driver_to_manager.valid <= '1';
wait for cycle;
socbridge_driver_to_manager.valid <= '0';
socbridge_driver_to_manager.address <= x"00000000";
socbridge_driver_to_manager.data <= x"00000000";
controller_to_manager.ready <= '1';
wait for halfcycle;
assert manager_to_controller.address = x"50000000" report "Controller got the wrong address! Expected 0x50000000 but got " & to_string(manager_to_controller.address) severity error;
assert manager_to_controller.cmd = "01" report "Controller got the wrong command! Expected 0b01 but got " & to_string(manager_to_controller.cmd) severity error;
assert manager_to_controller.seq_mem_access_count = 20 report "Controller got the wrong message size! expected 20 but got " & natural'image(manager_to_controller.seq_mem_access_count) severity error;
wait;
end process tb_proc;
end architecture tb ;

View File

@ -1,22 +1,31 @@
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.all;
library ganimede;
use ganimede.io_types.all;
library socbridge;
use socbridge.socbridge_driver_tb_pkg.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_socbridge;
use gan_socbridge.socbridge_driver_pkg.all;
library gan_manager;
use gan_manager.management_types.all;
entity socbridge_driver is
generic(
MAX_PKT_SIZE : integer range 1 to 128 := 8
);
port(
clk : in std_logic;
rst : in std_logic;
socbridge_clk : out std_logic;
controller_to_socbridge_driver : in controller_to_socbridge_driver_t;
socbridge_driver_to_controller : out socbridge_driver_to_controller_t;
manager_to_socbridge_driver : in manager_to_socbridge_driver_t;
socbridge_driver_to_manager : out socbridge_driver_to_manager_t;
ext_to_socbridge_driver : in ext_to_socbridge_driver_t;
socbridge_driver_to_ext : out socbridge_driver_to_ext_t;
socbridge_driver_to_buffer : out socbridge_driver_to_buffer_t;
buffer_to_socbridge_driver : in buffer_to_socbridge_driver_t
ip_to_socbridge_driver : in ip_to_socbridge_driver_t;
socbridge_driver_to_ip : out socbridge_driver_to_ip_t;
used_slots : in integer
);
end entity socbridge_driver;
@ -24,241 +33,267 @@ architecture rtl of socbridge_driver is
signal next_parity_out : std_logic;
signal ext_to_socbridge_driver_rec : ext_protocol_t;
shared variable socbridge_driver_to_ext_data_cmd : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal test : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal next_cmd : command_t;
signal next_cmd_size : integer;
signal next_state : state_t;
signal curr_cmd_bits : std_logic_vector(4 downto 0);
signal curr_response : response_t;
signal curr_response_bits : std_logic_vector(4 downto 0);
signal next_data_out : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal next_rx_transaction : transaction_t;
signal next_tx_transaction : transaction_t;
signal next_tx_data_size, next_rx_data_size : integer;
signal next_rx_state : rx_state_t;
signal next_tx_state : tx_state_t;
signal st : state_rec_t;
signal valid_out : std_logic;
--- TRANSLATOR ---
signal trans_st : translator_state_rec_t;
signal trans_next_state : translator_state_t;
--- FSM COMMUNICATION ---
signal tx_sent_response, rx_received_response : std_logic;
--- MANAGEMENT COMMUNICATION ---
begin
--- DEBUG GLOBAL BINDINGS ---
-- synthesis translate_off
G_next_parity_out <= next_parity_out;
G_ext_to_socbridge_driver_rec <= ext_to_socbridge_driver_rec;
G_next_state <= next_state;
G_socbridge_driver_to_ext_data_cmd <=test;
G_curr_command_bits <= curr_cmd_bits;
G_curr_response <= curr_response;
G_curr_response_bits <= curr_response_bits;
G_st <= st;
G_trans_st <= trans_st;
-- synthesis translate_on
ext_to_socbridge_driver_rec.data <= ext_to_socbridge_driver.payload;
ext_to_socbridge_driver_rec.clk <= ext_to_socbridge_driver.control(1);
ext_to_socbridge_driver_rec.parity <= ext_to_socbridge_driver.control(0);
socbridge_clk <= ext_to_socbridge_driver_rec.clk;
-- Helpful Bindings --
curr_response_bits <= ext_to_socbridge_driver.payload(7 downto 3); -- CANT USE ext_to_socbridge_driver_REC here for some reason, the assignment becomes stasteful
-- Not sure that the two process method is helping here: if this was a normal
-- signal assignment there would be no confusion.
-- in the case ... <= ext_to_socbridge_driver_rec we get
-- curr_resp | ext_to_socbridge_driver_rec | ext_to_socbridge_driver
-- 00000 | 00000000 | 00001001
-- 00000 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
--
-- but in the case ... <= ext_to_socbridge_driver we get
-- curr_resp | ext_to_socbridge_driver_rec | ext_to_socbridge_driver
-- 00000 | 00000000 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
-- 00001 | 00001001 | 00001001
with curr_response_bits select
curr_response <= WRITE_ACK when "00001",
WRITE_ACK when "00101",
READ_RESPONSE when "01000",
READ_RESPONSE when "01100",
NO_OP when others;
comb_proc: process(ext_to_socbridge_driver, buffer_to_socbridge_driver, curr_response, st, controller_to_socbridge_driver, trans_st)
comb_proc: process(ext_to_socbridge_driver, ip_to_socbridge_driver,
st, controller_to_socbridge_driver, trans_st,
tx_sent_response, rx_received_response,
valid_out, used_slots)
variable curr_response_bits : std_logic_vector(4 downto 0);
variable local_next_rx_transaction : transaction_t;
variable local_next_tx_transaction : transaction_t;
variable local_next_data_out : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
begin
-- Outputs
socbridge_driver_to_ext <= create_io_type_out_from_ext_protocol(st.socbridge_driver_to_ext_reg);
with trans_st.curr_state select
socbridge_driver_to_controller.is_active <= '0' when IDLE,
'1' when others;
-- Helpful Bindings --
next_rx_data_size <= 2 ** to_integer(unsigned(ext_to_socbridge_driver.payload(2 downto 0)));
curr_response_bits := ext_to_socbridge_driver.payload(7 downto 3);
-- Set helper var to current transaction seen at the input.
local_next_rx_transaction := NO_OP;
if curr_response_bits = "10000" then
local_next_rx_transaction := WRITE_ADD;
elsif curr_response_bits = "10100" then
local_next_rx_transaction := WRITE;
elsif curr_response_bits = "11000" then
local_next_rx_transaction := READ_ADD;
elsif curr_response_bits = "11100" then
local_next_rx_transaction := READ;
elsif curr_response_bits = "01001" then
local_next_rx_transaction := P_ERR;
elsif curr_response_bits = "00101" or curr_response_bits = "00001" then
local_next_rx_transaction := WRITE_ACK;
elsif curr_response_bits = "01100" or curr_response_bits = "01000" then
local_next_rx_transaction := READ_RESPONSE;
end if;
-- Outputs --
socbridge_driver_to_ext.payload <= st.socbridge_driver_to_ext_reg.data;
socbridge_driver_to_ext.control(0) <= st.socbridge_driver_to_ext_reg.parity;
socbridge_driver_to_ext.control(1) <= st.socbridge_driver_to_ext_reg.clk;
if trans_st.curr_state = IDLE then
socbridge_driver_to_controller.is_active <= '0';
else
socbridge_driver_to_controller.is_active <= '1';
end if;
--- State Transition Diagram ---
--
--
--
-- +-----+
-- | |
-- \|/ /--+
-- IDLE<-------------------+
-- / \ |
-- / \ |
-- / \ |
-- \|/ \|/ |
-- TX_HEADER RX_HEADER |
-- |\ / | |
-- | \ / | |
-- | ADDR1 | |
-- | | | |
-- | \|/ | |
-- | ADDR2 | |
-- | | | |
-- | \|/ | |
-- | ADDR3 | |
-- | | | |
-- | \|/ | |
-- | ADDR4 | |
-- | /\ | |
-- | / \ | |
-- |-+ +----| +---+ |
-- \|/ \|/ \|/ | |
-- TX_BODY RX_RESPONSE---+ |
-- | | |
-- | +--+ | |
-- \|/\|/ | \|/ |
-- TX_ACK--+ RX_BODY |
-- | | |
-- | | |
-- +-----------+--------------+
--
--- Next State Assignment ---
case st.curr_state is
when IDLE =>
if st.curr_cmd = WRITE or st.curr_cmd = WRITE_ADD then
next_state <= TX_HEADER;
elsif st.curr_cmd = READ or st.curr_cmd = READ_ADD then
next_state <= RX_HEADER;
else
next_state <= IDLE;
--- Next State Assignments ---
--- ### TX NEXT STATE ASSIGNMENTS ### ---
case st.curr_tx_state is
when IDLE =>
if local_next_tx_transaction /= NO_OP then
next_tx_state <= TX_HEADER;
else
next_tx_state <= IDLE;
end if;
when TX_HEADER =>
-- The header only takes one word (cycle) to transmit.
-- Continue to body or address directly afterwards.
if st.curr_cmd = WRITE_ADD then
next_state <= ADDR1;
else
next_state <= TX_BODY;
-- Commands
if st.curr_tx_transaction = WRITE_ADD or st.curr_tx_transaction = READ_ADD then
next_tx_state <= ADDR1;
elsif st.curr_tx_transaction = WRITE then
next_tx_state <= TX_W_BODY;
elsif st.curr_tx_transaction = READ then
next_tx_state <= TX_AWAIT;
-- Responses
elsif st.curr_tx_transaction = READ_RESPONSE then
next_tx_state <= TX_R_BODY;
else
next_tx_state <= IDLE;
end if;
when TX_BODY =>
-- Here we want to stay in TX_BODY for the duration of a packet.
if st.write_stage = 0 then
next_state <= TX_ACK;
when TX_R_BODY =>
if st.tx_stage <= 1 then
next_tx_state <= IDLE;
else
next_state <= TX_BODY;
end if;
when TX_ACK =>
-- Wait for write acknowledgement.
if curr_response = WRITE_ACK then
next_state <= IDLE;
else
next_state <= TX_ACK;
end if;
when RX_HEADER =>
-- The header only takes one word (cycle) to transmit.
-- Continue to awaiting response directly afterwards.
if st.curr_cmd = READ_ADD then
next_state <= ADDR1;
else
next_state <= RX_RESPONSE;
end if;
when RX_RESPONSE =>
-- Wait for read response.
if curr_response = READ_RESPONSE then
next_state <= RX_BODY;
else
next_state <= RX_RESPONSE;
end if;
when RX_BODY =>
-- Here we want to stay in RX_BODY for the duration of a packet.
if st.read_stage = 0 then
next_state <= IDLE;
else
next_state <= RX_BODY;
next_tx_state <= TX_R_BODY;
end if;
when ADDR1 =>
-- Transmits the entire address and returns to the appropriate
next_state <= ADDR2;
next_tx_state <= ADDR2;
when ADDR2 =>
next_state <= ADDR3;
next_tx_state <= ADDR3;
when ADDR3 =>
next_state <= ADDR4;
next_tx_state <= ADDR4;
when ADDR4 =>
if st.curr_cmd = WRITE or st.curr_cmd = WRITE_ADD then
next_state <= TX_BODY;
if st.curr_tx_transaction = READ_ADD then
next_tx_state <= TX_AWAIT;
elsif st.curr_tx_transaction = WRITE_ADD then
next_tx_state <= TX_W_BODY;
else
next_state <= RX_RESPONSE;
next_tx_state <= IDLE;
end if;
when TX_W_BODY =>
if st.tx_stage <= 1 then
next_tx_state <= TX_AWAIT;
else
next_tx_state <= TX_W_BODY;
end if;
when TX_AWAIT =>
-- Wait for RX FSM to get a response
if (st.curr_tx_transaction = WRITE_ADD or st.curr_tx_transaction = WRITE)
and st.curr_rx_transaction = WRITE_ACK then
next_tx_state <= IDLE;
elsif (st.curr_tx_transaction = READ_ADD or st.curr_tx_transaction = READ)
and st.curr_rx_transaction = READ_RESPONSE and st.rx_stage = 1 then
next_tx_state <= IDLE;
else
next_tx_state <= TX_AWAIT;
end if;
end case;
--- Combinatorial output based on current state ---
socbridge_driver_to_ext_data_cmd := (others => '0');
socbridge_driver_to_buffer.is_full_out <= '1';
socbridge_driver_to_buffer.write_enable_in <= '0';
socbridge_driver_to_buffer.payload <= (others => '0');
case st.curr_state is
--- Next State Assignment Of RX FSM ---
case st.curr_rx_state is
when IDLE =>
if st.curr_cmd = WRITE or st.curr_cmd = WRITE_ADD then
socbridge_driver_to_ext_data_cmd := get_cmd_bits(st.curr_cmd) & get_size_bits(st.curr_cmd_size);
elsif st.curr_cmd = READ or st.curr_cmd = READ_ADD then
socbridge_driver_to_ext_data_cmd := get_cmd_bits(st.curr_cmd) & get_size_bits(st.curr_cmd_size);
if local_next_rx_transaction /= NO_OP then
next_rx_state <= RX_HEADER;
else
end if;
when TX_HEADER =>
if st.curr_cmd = WRITE_ADD then
socbridge_driver_to_ext_data_cmd := st.curr_addr(7 downto 0);
else
socbridge_driver_to_ext_data_cmd := buffer_to_socbridge_driver.payload;
socbridge_driver_to_buffer.is_full_out <= '0';
next_rx_state <= IDLE;
end if;
when TX_BODY =>
if st.write_stage > 0 then
socbridge_driver_to_buffer.is_full_out <= '0';
socbridge_driver_to_ext_data_cmd := buffer_to_socbridge_driver.payload;
else
socbridge_driver_to_ext_data_cmd := (others => '0');
end if;
when TX_ACK =>
when RX_HEADER =>
if st.curr_cmd = READ_ADD then
socbridge_driver_to_ext_data_cmd := st.curr_addr(7 downto 0);
end if;
when RX_RESPONSE =>
when RX_BODY =>
socbridge_driver_to_buffer.payload <= st.ext_to_socbridge_driver_reg.data;
socbridge_driver_to_buffer.write_enable_in <= '1';
-- Commands
if st.curr_rx_transaction = WRITE_ADD or st.curr_rx_transaction = READ_ADD then
next_rx_state <= ADDR1;
elsif st.curr_rx_transaction = WRITE then
next_rx_state <= RX_W_BODY;
elsif st.curr_rx_transaction = READ then
next_rx_state <= RX_AWAIT;
-- Responses
elsif st.curr_rx_transaction = READ_RESPONSE then
next_rx_state <= RX_R_BODY;
else
next_rx_state <= IDLE;
end if;
when RX_R_BODY =>
if st.rx_stage <= 1 then
next_rx_state <= IDLE;
else
next_rx_state <= RX_R_BODY;
end if;
when ADDR1 =>
socbridge_driver_to_ext_data_cmd := st.curr_addr(15 downto 8);
next_rx_state <= ADDR2;
when ADDR2 =>
socbridge_driver_to_ext_data_cmd := st.curr_addr(23 downto 16);
next_rx_state <= ADDR3;
when ADDR3 =>
socbridge_driver_to_ext_data_cmd := st.curr_addr(31 downto 24);
next_rx_state <= ADDR4;
when ADDR4 =>
if st.curr_cmd = WRITE_ADD then
socbridge_driver_to_buffer.is_full_out <= '0';
socbridge_driver_to_ext_data_cmd := buffer_to_socbridge_driver.payload;
report integer'image(to_integer(signed(socbridge_driver_to_ext_data_cmd))) & " "& integer'image(to_integer(signed(buffer_to_socbridge_driver.payload)));
if st.curr_rx_transaction = READ_ADD then
next_rx_state <= RX_AWAIT;
elsif st.curr_rx_transaction = WRITE_ADD then
next_rx_state <= RX_W_BODY;
else
next_rx_state <= IDLE; -- Potentially superfluous safety
end if;
when RX_W_BODY =>
if st.rx_stage <= 1 then
next_rx_state <= RX_AWAIT;
else
next_rx_state <= RX_W_BODY;
end if;
when RX_AWAIT =>
-- Wait for TX FSM to send a response
if (st.curr_rx_transaction = WRITE_ADD or st.curr_rx_transaction = WRITE)
and st.curr_tx_transaction = WRITE_ACK then
next_rx_state <= IDLE;
elsif (st.curr_rx_transaction = READ_ADD or st.curr_rx_transaction = READ)
and st.curr_tx_transaction = READ_RESPONSE and st.tx_stage = 1 then
next_rx_state <= IDLE;
else
next_rx_state <= RX_AWAIT;
end if;
end case;
next_parity_out <= calc_parity(socbridge_driver_to_ext_data_cmd);
--- DEBUG GLOBAL BINDINGS ---
-- synthesis translate_off
test <= socbridge_driver_to_ext_data_cmd;
-- synthesis translate_on
--- TRANSLATOR ---
--- Combinatorial output based on current state ---
local_next_data_out := (others => '0');
socbridge_driver_to_ip.ready <= '0';
--- ### TX_STATE BASED OUTPUT ### ---
case st.curr_tx_state is
when IDLE =>
when TX_HEADER =>
if st.curr_tx_transaction = WRITE_ACK or st.curr_tx_transaction = READ_RESPONSE then
local_next_data_out := get_header_bits(st.curr_tx_transaction, st.curr_rx_transaction) & get_size_bits(st.rx_data_size);
else
local_next_data_out := get_header_bits(st.curr_tx_transaction, st.curr_rx_transaction) & get_size_bits(st.tx_data_size);
end if;
if st.curr_tx_transaction = WRITE then
socbridge_driver_to_ip.ready <= '1';
end if;
when TX_W_BODY =>
if st.tx_stage > 1 then
socbridge_driver_to_ip.ready <= '1';
end if;
if st.tx_stage > 0 and ip_to_socbridge_driver.valid = '1' then
local_next_data_out := ip_to_socbridge_driver.data;
else
local_next_data_out := (others => '0');
end if;
when TX_R_BODY =>
if st.tx_stage > 0 then
local_next_data_out := st.curr_read_data((((st.tx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.tx_stage - 1) mod 4) + 1) - 1) * 8);
end if;
when TX_AWAIT =>
when ADDR1 =>
local_next_data_out := st.curr_tx_addr(31 downto 24);
when ADDR2 =>
local_next_data_out := st.curr_tx_addr(23 downto 16);
when ADDR3 =>
local_next_data_out := st.curr_tx_addr(15 downto 8);
when ADDR4 =>
local_next_data_out := st.curr_tx_addr(7 downto 0);
if st.curr_tx_transaction = WRITE_ADD then
socbridge_driver_to_ip.ready <= '1';
end if;
end case;
--- ### RX_STATE BASED OUTPUT ### ---
socbridge_driver_to_manager.valid <= '0';
socbridge_driver_to_manager.address <= (others => '0');
socbridge_driver_to_manager.data <= (others => '0');
case st.curr_rx_state is
when IDLE =>
when RX_HEADER =>
when RX_W_BODY =>
when RX_R_BODY =>
when RX_AWAIT =>
if st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then
socbridge_driver_to_manager.data <= st.curr_write_data;
socbridge_driver_to_manager.address <= st.curr_rx_write_addr;
socbridge_driver_to_manager.valid <= '1';
else
socbridge_driver_to_manager.address <= st.curr_rx_read_addr;
end if;
when ADDR1 =>
when ADDR2 =>
when ADDR3 =>
when ADDR4 =>
end case;
next_parity_out <= calc_parity(local_next_data_out);
--- TRANSLATOR ---
--- Next state assignment
case trans_st.curr_state is
when IDLE =>
if trans_st.curr_inst.request = '1' then
if st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD
or st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD then
trans_next_state <= IDLE;
elsif trans_st.curr_inst.request = '1' then
trans_next_state <= SEND;
else
trans_next_state <= IDLE;
end if;
-- Wait for driver to go idle and send next instruction. Then enter AWAIT
when SEND =>
if st.curr_state /= IDLE then
if st.curr_tx_state /= IDLE then
trans_next_state <= SEND_ACCEPTED;
else
trans_next_state <= SEND;
@ -268,95 +303,170 @@ begin
trans_next_state <= AWAIT;
-- Wait for driver to finish current instruction, then reenter SEND
when AWAIT =>
if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_state = IDLE then
if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_tx_state = IDLE then
trans_next_state <= IDLE;
elsif st.curr_state = IDLE then
elsif st.curr_tx_state = IDLE and not (trans_st.curr_inst.instruction = WRITE and used_slots < MAX_PKT_SIZE)then
trans_next_state <= SEND;
else
trans_next_state <= AWAIT;
end if;
end case;
--- Combinatorial output based on state
next_cmd <= NO_OP;
next_cmd_size <= 0;
case trans_st.curr_state is
when IDLE =>
when SEND =>
if trans_st.is_first_word = '1' then
if trans_st.curr_inst.instruction = READ then
next_cmd <= READ_ADD;
elsif trans_st.curr_inst.instruction = WRITE then
next_cmd <= WRITE_ADD;
--- NEXT TX TRANSACTION ---
local_next_tx_transaction := NO_OP;
next_tx_data_size <= 0;
if trans_st.curr_state = IDLE and st.curr_rx_state = RX_AWAIT then
if (st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD) and manager_to_socbridge_driver.ready = '1' then
local_next_tx_transaction := WRITE_ACK;
elsif (st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD) and manager_to_socbridge_driver.valid = '1' then
next_tx_data_size <= st.rx_data_size;
local_next_tx_transaction := READ_RESPONSE;
end if;
else
case trans_st.curr_state is
when IDLE =>
when SEND =>
if trans_st.is_first_word = '1' then
if trans_st.curr_inst.instruction = READ then
local_next_tx_transaction := READ_ADD;
elsif trans_st.curr_inst.instruction = WRITE then
local_next_tx_transaction := WRITE_ADD;
end if;
else
if trans_st.curr_inst.instruction = READ then
local_next_tx_transaction := READ;
elsif trans_st.curr_inst.instruction = WRITE then
local_next_tx_transaction := WRITE;
end if;
end if;
else
if trans_st.curr_inst.instruction = READ then
next_cmd <= READ;
elsif trans_st.curr_inst.instruction = WRITE then
next_cmd <= WRITE;
end if;
end if;
if trans_st.curr_inst.seq_mem_access_count > 128 then
next_cmd_size <= 128;
elsif trans_st.curr_inst.seq_mem_access_count > 0 then
next_cmd_size <= trans_st.curr_inst.seq_mem_access_count;
else
next_cmd_size <= 0;
end if;
when others =>
if trans_st.curr_inst.seq_mem_access_count > MAX_PKT_SIZE then
next_tx_data_size <= MAX_PKT_SIZE;
elsif trans_st.curr_inst.seq_mem_access_count > 0 then
next_tx_data_size <= trans_st.curr_inst.seq_mem_access_count;
else
next_tx_data_size <= 0;
end if;
when others =>
end case;
end if;
next_tx_transaction <= local_next_tx_transaction;
next_rx_transaction <= local_next_rx_transaction;
next_data_out <= local_next_data_out;
socbridge_driver_to_ip.valid <= valid_out;
end process comb_proc;
-- Process updating internal registers based on primary clock
seq_proc: process(ext_to_socbridge_driver_rec.clk, rst, clk)
seq_proc: process(ext_to_socbridge_driver_rec.clk, st.ext_to_socbridge_driver_reg.data, rst, clk)
begin
if(rst = '1') then
st.ext_to_socbridge_driver_reg.data <= (others => '0');
st.socbridge_driver_to_ext_reg.data <= (others => '0');
st.socbridge_driver_to_ext_reg.clk <= '0';
st.socbridge_driver_to_ext_reg.parity <= '1';
st.curr_state <= IDLE;
st.write_stage <= 0;
st.read_stage <= 0;
st.curr_cmd <= NO_OP;
st.curr_cmd_size <= 0;
st.curr_addr <= (others => '0');
st.curr_tx_state <= IDLE;
st.curr_rx_state <= IDLE;
st.tx_stage <= 0;
st.rx_stage <= 0;
st.curr_tx_transaction <= NO_OP;
st.curr_rx_transaction <= NO_OP;
st.tx_data_size <= 0;
st.rx_data_size <= 0;
st.curr_tx_addr <= (others => '0');
st.curr_rx_read_addr <= (others => '0');
st.curr_rx_write_addr <= (others => '0');
st.curr_write_data <= (others => '0');
st.curr_read_data <= (others => '0');
socbridge_driver_to_ip.data <= (others => '0');
valid_out <= '0';
elsif(rising_edge(ext_to_socbridge_driver_rec.clk)) then
st.ext_to_socbridge_driver_reg.data <= ext_to_socbridge_driver_rec.data;
st.ext_to_socbridge_driver_reg.clk <= ext_to_socbridge_driver_rec.clk;
st.ext_to_socbridge_driver_reg.parity <= ext_to_socbridge_driver_rec.parity;
st.socbridge_driver_to_ext_reg.data <= socbridge_driver_to_ext_data_cmd;
st.socbridge_driver_to_ext_reg.data <= next_data_out;
st.socbridge_driver_to_ext_reg.clk <= not st.socbridge_driver_to_ext_reg.clk;
st.socbridge_driver_to_ext_reg.parity <= next_parity_out;
st.curr_state <= next_state;
case st.curr_state is
st.curr_tx_state <= next_tx_state;
st.curr_rx_state <= next_rx_state;
valid_out <= '0';
case st.curr_tx_state is
when IDLE =>
st.curr_cmd <= next_cmd;
st.curr_cmd_size <= next_cmd_size;
st.curr_addr <= trans_st.curr_inst.address;
if next_cmd_size > 0 then
st.write_stage <= next_cmd_size - 1;
st.read_stage <= next_cmd_size - 1;
st.curr_tx_transaction <= next_tx_transaction;
st.tx_data_size <= next_tx_data_size;
st.curr_tx_addr <= trans_st.curr_inst.address;
if next_tx_transaction = WRITE_ADD or next_tx_transaction = WRITE
or next_tx_transaction = READ_RESPONSE then
st.tx_stage <= next_tx_data_size;
else
st.tx_stage <= 0;
end if;
when TX_HEADER =>
when TX_BODY =>
if st.write_stage > 0 then
st.write_stage <= st.write_stage - 1;
when TX_W_BODY =>
if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1;
end if;
when TX_ACK =>
st.curr_cmd <= NO_OP;
st.curr_cmd_size <= 0;
when RX_HEADER =>
when RX_BODY =>
if st.read_stage > 0 then
st.read_stage <= st.read_stage - 1;
when TX_R_BODY =>
if st.tx_stage > 0 then
st.tx_stage <= st.tx_stage - 1;
end if;
when others =>
end case;
case st.curr_rx_state is
when IDLE =>
st.curr_rx_transaction <= next_rx_transaction;
st.rx_data_size <= next_rx_data_size;
if next_rx_transaction = WRITE_ADD or next_rx_transaction = WRITE
or next_rx_transaction = READ_RESPONSE then
st.rx_stage <= next_rx_data_size;
else
st.rx_stage <= 0;
end if;
when RX_HEADER =>
when RX_R_BODY =>
socbridge_driver_to_ip.data <= st.ext_to_socbridge_driver_reg.data;
valid_out <= '1';
if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1;
end if;
when RX_W_BODY =>
if st.rx_stage > 0 then
st.rx_stage <= st.rx_stage - 1;
st.curr_write_data((((st.rx_stage - 1) mod 4) + 1) * 8 - 1 downto ((((st.rx_stage - 1) mod 4) + 1) - 1) * 8) <= st.ext_to_socbridge_driver_reg.data;
end if;
when RX_AWAIT =>
st.curr_read_data <= manager_to_socbridge_driver.data;
-- THIS DOESN'T WORK FOR LARGER THAN 4 BYTE ACCESSES, SHOULD BE FIXED BUT NOT NEEDED IF ONLY 4 BYTE ACCESSES ARRIVE
if st.curr_tx_transaction = READ_RESPONSE or st.curr_tx_transaction = WRITE_ACK then
if (st.curr_rx_transaction = READ or st.curr_rx_transaction = READ_ADD) and (st.tx_stage - 2) mod 4 = 0 then
st.curr_rx_read_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.curr_rx_read_addr) + 4), 32));
elsif (st.curr_rx_transaction = WRITE or st.curr_rx_transaction = WRITE_ADD) and (st.rx_stage - 2) mod 4 = 0 then
st.curr_rx_write_addr <= std_logic_vector(to_unsigned(to_integer(unsigned(st.curr_rx_write_addr) + 4), 32));
end if;
end if;
when ADDR1 =>
if st.curr_rx_transaction = READ_ADD then
st.curr_rx_read_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
else
st.curr_cmd <= NO_OP;
st.curr_cmd_size <= 0;
st.curr_rx_write_addr(31 downto 24) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR2 =>
if st.curr_rx_transaction = READ_ADD then
st.curr_rx_read_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
else
st.curr_rx_write_addr(23 downto 16) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR3 =>
if st.curr_rx_transaction = READ_ADD then
st.curr_rx_read_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
else
st.curr_rx_write_addr(15 downto 8) <= st.ext_to_socbridge_driver_reg.data;
end if;
when ADDR4 =>
if st.curr_rx_transaction = READ_ADD then
st.curr_rx_read_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
else
st.curr_rx_write_addr(7 downto 0) <= st.ext_to_socbridge_driver_reg.data;
end if;
when others =>
end case;
end if;
@ -380,19 +490,27 @@ begin
end if;
trans_st.is_first_word <= '1';
when SEND =>
if trans_st.curr_inst.seq_mem_access_count mod 256 = 0 then
trans_st.is_first_word <= '1';
end if;
when SEND_ACCEPTED =>
trans_st.curr_inst.seq_mem_access_count <= trans_st.curr_inst.seq_mem_access_count - 128;
trans_st.curr_inst.seq_mem_access_count <= trans_st.curr_inst.seq_mem_access_count - MAX_PKT_SIZE;
trans_st.curr_inst.address <= std_logic_vector(unsigned(trans_st.curr_inst.address) + MAX_PKT_SIZE);
when AWAIT =>
if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_state = IDLE then
if trans_st.curr_inst.seq_mem_access_count <= 0 and st.curr_tx_state = IDLE then
trans_st.curr_inst.request <= '0';
trans_st.curr_inst.address <= (others => '0');
trans_st.curr_inst.seq_mem_access_count <= 0;
trans_st.curr_inst.instruction <= NO_OP;
end if;
trans_st.is_first_word <= '0';
if trans_st.curr_inst.seq_mem_access_count mod 256 = 0 then
trans_st.is_first_word <= '1';
end if;
when others =>
end case;
end if;
end process seq_proc;
end architecture rtl;

View File

@ -2,24 +2,23 @@ library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.MATH_REAL.all;
library ganimede;
use ganimede.io_types.all;
library gan_ganimede;
use gan_ganimede.io_types.all;
package socbridge_driver_tb_pkg is
package socbridge_driver_pkg is
subtype command_size_t is integer range 0 to 128;
type command_t is
(NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR);
type transaction_t is
(NO_OP, WRITE_ADD, WRITE, READ_ADD, READ, P_ERR, WRITE_ACK, READ_RESPONSE);
type response_t is
(NO_OP, WRITE_ACK, READ_RESPONSE);
type state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4,
TX_HEADER, TX_BODY, TX_ACK,
RX_HEADER, RX_RESPONSE, RX_BODY);
type rx_state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4, RX_AWAIT,
RX_R_BODY, RX_HEADER, RX_W_BODY);
type tx_state_t is
(IDLE, ADDR1, ADDR2, ADDR3, ADDR4, TX_AWAIT,
TX_HEADER, TX_W_BODY, TX_R_BODY);
--- TRANSLATOR ---
type translator_state_t is (IDLE, SEND, SEND_ACCEPTED, AWAIT);
@ -27,7 +26,7 @@ package socbridge_driver_tb_pkg is
curr_inst : controller_to_socbridge_driver_t;
curr_state : translator_state_t;
is_first_word : std_logic;
end record translator_state_rec_t;
end record translator_state_rec_t;
type ext_protocol_t is record
data : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
@ -36,12 +35,18 @@ package socbridge_driver_tb_pkg is
end record ext_protocol_t;
type state_rec_t is record
curr_state: state_t;
curr_rx_transaction : transaction_t;
curr_tx_transaction : transaction_t;
curr_rx_state: rx_state_t;
curr_tx_state: tx_state_t;
ext_to_socbridge_driver_reg, socbridge_driver_to_ext_reg : ext_protocol_t;
write_stage, read_stage : NATURAL;
curr_cmd : command_t;
curr_cmd_size: integer;
curr_addr : std_logic_vector(31 downto 0);
tx_stage, rx_stage : NATURAL;
tx_data_size, rx_data_size : integer;
curr_write_data : std_logic_vector(31 downto 0);
curr_read_data : std_logic_vector(31 downto 0);
curr_tx_addr : std_logic_vector(31 downto 0);
curr_rx_read_addr : std_logic_vector(31 downto 0);
curr_rx_write_addr : std_logic_vector(31 downto 0);
end record state_rec_t;
impure function calc_parity(
d : STD_LOGIC_VECTOR(interface_inst.socbridge.payload_width - 1 downto 0)
@ -50,26 +55,13 @@ package socbridge_driver_tb_pkg is
input: ext_protocol_t
) return socbridge_driver_to_ext_t;
function to_string ( a: std_logic_vector) return string;
pure function get_cmd_bits(command : command_t) return std_logic_vector;
pure function get_header_bits(transaction : transaction_t; caused_by: transaction_t) return std_logic_vector;
pure function get_size_bits(size : command_size_t) return std_logic_vector;
pure function get_size_bits_sim(size : command_size_t) return std_logic_vector;
--- DEBUG GLOBAL SIGNALS ---
-- synthesis translate_off
signal G_next_parity_out : std_logic;
signal G_ext_to_socbridge_driver_rec : ext_protocol_t;
signal G_socbridge_driver_to_ext_data_cmd : std_logic_vector(interface_inst.socbridge.payload_width - 1 downto 0);
signal G_next_state : state_t;
signal G_curr_command : command_t;
signal G_curr_command_bits : std_logic_vector(4 downto 0);
signal G_curr_response : response_t;
signal G_curr_response_bits : std_logic_vector(4 downto 0);
signal G_st : state_rec_t;
signal G_trans_st : translator_state_rec_t;
-- synthesis translate_on
end package socbridge_driver_tb_pkg;
end package socbridge_driver_pkg;
package body socbridge_driver_tb_pkg is
package body socbridge_driver_pkg is
function to_string ( a: std_logic_vector) return string is
variable b : string (1 to a'length) := (others => NUL);
variable stri : integer := 1;
@ -105,18 +97,33 @@ package body socbridge_driver_tb_pkg is
val.control(0) := input.parity;
return val;
end function;
pure function get_cmd_bits(command : command_t)
pure function get_header_bits(transaction : transaction_t; caused_by : transaction_t)
return std_logic_vector is
variable val : std_logic_vector(4 downto 0);
begin
with command select
val := "00000" when NO_OP,
"10000" when WRITE_ADD,
"10100" when WRITE,
"11000" when READ_ADD,
"11100" when READ,
"01001" when P_ERR,
"11111" when others;
val := "11111";
if transaction = NO_OP then
val := "00000";
elsif transaction = WRITE_ADD then
val := "10000";
elsif transaction = WRITE then
val := "10100";
elsif transaction = READ_ADD then
val := "11000";
elsif transaction = READ then
val := "11100";
elsif transaction = WRITE_ACK and caused_by = WRITE then
val := "00101";
elsif transaction = WRITE_ACK and caused_by = WRITE_ADD then
val := "00001";
elsif transaction = READ_RESPONSE and caused_by = READ then
val := "01100";
elsif transaction = READ_RESPONSE and caused_by = READ_ADD then
val := "01000";
elsif transaction = P_ERR then
val := "01001";
end if;
return val;
end function;
@ -153,4 +160,5 @@ package body socbridge_driver_tb_pkg is
val := std_logic_vector(TO_UNSIGNED(size - 1, 3));
return val;
end function;
end package body socbridge_driver_tb_pkg;
end package body socbridge_driver_pkg;

View File

@ -1,11 +1,10 @@
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;
use IEEE.MATH_REAL.all;
library work;
use work.socbridge_driver_tb_pkg.all;
library ganimede;
use ganimede.io_types.all;
library socbridge;
library gan_ganimede;
use gan_ganimede.io_types.all;
library gan_socbridge;
entity socbridge_driver_tb is
@ -14,319 +13,95 @@ end entity socbridge_driver_tb;
architecture tb of socbridge_driver_tb is
signal clk : std_logic := '0';
signal rst : std_logic;
signal cmd : command_t;
signal address : std_logic_vector(31 downto 0);
signal cmd_size : positive;
signal ext_to_socbridge_driver : ext_to_socbridge_driver_t;
signal socbridge_driver_to_ext : socbridge_driver_to_ext_t;
signal buffer_to_socbridge_driver : buffer_to_socbridge_driver_t;
signal socbridge_driver_to_buffer : socbridge_driver_to_buffer_t;
signal controller_to_socbridge_driver : controller_to_socbridge_driver_t;
signal socbridge_driver_controller : socbridge_driver_to_controller_t;
signal curr_word : std_logic_vector(ext_to_socbridge_driver.payload'length - 1 downto 0);
signal expected_out : std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0);
signal ip_to_socbridge_driver : ip_to_socbridge_driver_t;
signal socbridge_driver_to_ip : socbridge_driver_to_ip_t;
signal controller_to_socbridge_driver : controller_to_socbridge_driver_t;
signal socbridge_driver_to_controller : socbridge_driver_to_controller_t;
shared variable done : boolean := FALSE;
constant CLK_PERIOD : TIME := 10 ns;
constant SIMULATION_CYCLE_COUNT : INTEGER := 100;
procedure fail(error_msg : string) is
begin
wait for CLK_PERIOD;
report "Simulation ending due to: " & error_msg & ". Shutting down..." severity FAILURE;
end procedure;
procedure check_next_state(correct_state: state_t) is
begin
if(not (correct_state = G_next_state)) then
report "Next State is not what was expected, found " & state_t'image(G_next_state)
& " but expected " & state_t'image(correct_state) severity error;
fail("Next State");
end if;
end procedure;
procedure check_data_out(correct_data: std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0)) is
begin
if(not (correct_data = socbridge_driver_to_ext.payload)) then
report "Data out is not what was expected, found " & to_string(socbridge_driver_to_ext.payload)
& " but expected " & to_string(correct_data) severity error;
fail("Data out");
end if;
end procedure;
procedure check_parity(correct_data: std_logic_vector(socbridge_driver_to_ext.payload'length - 1 downto 0)) is
begin
if(not (calc_parity(correct_data) = calc_parity(socbridge_driver_to_ext.payload))) then
report "Parity out is not what was expected, found " & std_logic'image(calc_parity(socbridge_driver_to_ext.payload))
& " but expected " & std_logic'image(calc_parity(correct_data)) severity error;
fail("Parity out");
end if;
end procedure;
-- component socbridge_driver is
-- port(
-- clk : in std_logic;
-- rst : in std_logic;
-- cmd : in command_t;
-- address : in std_logic_vector(31 downto 0);
-- cmd_size: in positive;
-- ext_to_socbridge_driver : in ext_to_socbridge_driver_t;
-- socbridge_driver_to_ext : out socbridge_driver_to_ext_t;
-- buffer_to_socbridge_driver : out buffer_to_socbridge_driver_t;
-- socbridge_driver_to_buffer : in socbridge_driver_to_buffer_t
-- );
-- end component socbridge_driver;
constant MAX_CYCLE_COUNT : INTEGER := 1000000;
begin
socbridge_driver_inst: entity socbridge.socbridge_driver
socbridge_driver_inst: entity gan_socbridge.socbridge_driver
port map(
clk => clk,
rst => rst,
controller_to_socbridge_driver => controller_to_socbridge_driver,
socbridge_driver_to_controller => socbridge_driver_controller,
socbridge_driver_to_controller => socbridge_driver_to_controller,
ext_to_socbridge_driver => ext_to_socbridge_driver,
socbridge_driver_to_ext => socbridge_driver_to_ext,
buffer_to_socbridge_driver => buffer_to_socbridge_driver,
socbridge_driver_to_buffer => socbridge_driver_to_buffer
ip_to_socbridge_driver => ip_to_socbridge_driver,
socbridge_driver_to_ip => socbridge_driver_to_ip
);
ext_to_socbridge_driver.control(1) <= clk;
real_clk_proc: process
variable cycle_count :integer := 0;
begin
for x in 0 to SIMULATION_CYCLE_COUNT*2 loop
while (not done) and (cycle_count < MAX_CYCLE_COUNT) loop
clk <= not clk;
wait for CLK_PERIOD / 2;
end loop;
wait;
end process real_clk_proc;
reset_proc: process
begin
rst <= '1';
wait for CLK_PERIOD * 3;
rst <= '0';
wait;
end process reset_proc;
verify_clk: process
variable last_clk : std_logic;
begin
wait for CLK_PERIOD / 2;
for x in 0 to SIMULATION_CYCLE_COUNT loop
if last_clk = socbridge_driver_to_ext.control(1) then
report "Secondary side clk not correct." severity error;
end if;
last_clk := socbridge_driver_to_ext.control(1);
wait for CLK_PERIOD;
end loop;
wait;
end process verify_clk;
verify_out_signals: process
begin
wait for CLK_PERIOD / 2;
for x in 0 to SIMULATION_CYCLE_COUNT loop
check_data_out(expected_out);
check_parity(expected_out);
wait for CLK_PERIOD;
end loop;
wait;
end process verify_out_signals;
verify_signals : process
begin
expected_out <= "00000000";
wait for 3 * CLK_PERIOD;
wait for CLK_PERIOD / 3;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD /4;
check_next_state(TX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(WRITE) & get_size_bits_sim(2);
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000001";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000010";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait for CLK_PERIOD * 6;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD /4;
check_next_state(TX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(WRITE_ADD) & get_size_bits(2);
check_next_state(ADDR1);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(ADDR2);
wait for CLK_PERIOD;
expected_out <= x"A0";
check_next_state(ADDR3);
wait for CLK_PERIOD;
expected_out <= x"0F";
check_next_state(ADDR4);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00000100";
check_next_state(TX_BODY);
wait for CLK_PERIOD;
expected_out <= "00001000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(TX_ACK);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(IDLE);
wait for CLK_PERIOD * 2;
wait for CLK_PERIOD /4;
check_next_state(RX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(READ) & get_size_bits(2);
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait for CLK_PERIOD * 5;
wait for CLK_PERIOD /4;
check_next_state(RX_HEADER);
wait for CLK_PERIOD * 3 / 4;
expected_out <= get_cmd_bits(READ_ADD) & get_size_bits(2);
check_next_state(ADDR1);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(ADDR2);
wait for CLK_PERIOD;
expected_out <= x"A0";
check_next_state(ADDR3);
wait for CLK_PERIOD;
expected_out <= x"0F";
check_next_state(ADDR4);
wait for CLK_PERIOD;
expected_out <= x"FA";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
expected_out <= "00000000";
check_next_state(RX_RESPONSE);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(RX_BODY);
wait for CLK_PERIOD;
check_next_state(IDLE);
wait;
end process verify_signals;
command_stimulus: process
begin
cmd <= NO_OP;
cmd_size <= 2;
wait for 3*CLK_PERIOD;
wait for CLK_PERIOD / 2;
cmd <= WRITE;
wait for CLK_PERIOD;
cmd <= NO_OP;
wait for CLK_PERIOD * 10;
cmd <= WRITE_ADD;
address <= x"FA0FA0FA";
wait for CLK_PERIOD;
cmd <= NO_OP;
address <= (others => '0');
wait for CLK_PERIOD * 10;
cmd <= READ;
wait for CLK_PERIOD;
cmd <= NO_OP;
wait for CLK_PERIOD * 10;
cmd <= READ_ADD;
address <= x"FA0FA0FA";
wait for CLK_PERIOD;
cmd <= NO_OP;
address <= (others => '0');
controller_to_socbridge_driver.instruction <= NO_OP;
controller_to_socbridge_driver.seq_mem_access_count <= 0;
controller_to_socbridge_driver.request <= '0';
controller_to_socbridge_driver.address <= x"00000000";
wait until rst='0';
for i in 100 downto 0 loop
wait until rising_edge(clk);
end loop;
controller_to_socbridge_driver.instruction <= WRITE;
controller_to_socbridge_driver.seq_mem_access_count <= 128;
controller_to_socbridge_driver.address <= x"40000000";
wait until rising_edge(clk);
controller_to_socbridge_driver.request <= '1';
wait until socbridge_driver_to_controller.is_active = '1';
controller_to_socbridge_driver.request <= '0';
wait until socbridge_driver_to_controller.is_active = '0';
for i in 100 downto 0 loop
wait until rising_edge(clk);
end loop;
controller_to_socbridge_driver.instruction <= READ;
controller_to_socbridge_driver.seq_mem_access_count <= 128;
controller_to_socbridge_driver.address <= x"40000000";
wait until rising_edge(clk);
controller_to_socbridge_driver.request <= '1';
wait until socbridge_driver_to_controller.is_active = '1';
controller_to_socbridge_driver.request <= '0';
wait until socbridge_driver_to_controller.is_active = '0';
done := TRUE;
wait;
end process command_stimulus;
external_stimulus_signal: process(curr_word)
begin
ext_to_socbridge_driver.payload <= curr_word;
ext_to_socbridge_driver.control(0) <= calc_parity(curr_word);
end process external_stimulus_signal;
external_stimulus: process
begin
rst <= '0';
wait for CLK_PERIOD / 1000;
rst <= '1';
curr_word <= "00000000";
wait for 999 * CLK_PERIOD / 1000;
wait for 2 * CLK_PERIOD;
rst <= '0';
wait for CLK_PERIOD / 2;
wait for 4* CLK_PERIOD;
curr_word <= "00001001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD * 14;
curr_word <= "00101001";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD*5;
curr_word <= "01000001";
wait for CLK_PERIOD;
curr_word <= "10000000";
wait for CLK_PERIOD;
curr_word <= "01000000";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait for CLK_PERIOD*12;
curr_word <= "01100001";
wait for CLK_PERIOD;
curr_word <= "00100000";
wait for CLK_PERIOD;
curr_word <= "00010000";
wait for CLK_PERIOD;
curr_word <= "00000000";
wait;
end process external_stimulus;
internal_stimulus: process
variable count : integer := 1;
begin
buffer_to_socbridge_driver.is_full_in <= '0';
buffer_to_socbridge_driver.write_enable_out <= '0';
wait for 3 * CLK_PERIOD;
ip_to_socbridge_driver.ready <= '0';
ip_to_socbridge_driver.valid <= '1';
wait until rst = '0';
-- stimulus goes here
buffer_to_socbridge_driver.write_enable_out <= '1';
buffer_to_socbridge_driver.payload <= "00000001";
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00000010";
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00000100";
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00001000";
wait until rising_edge(clk) and socbridge_driver_to_buffer.is_full_out = '0';
wait until falling_edge(clk);
buffer_to_socbridge_driver.payload <= "00010000";
wait until socbridge_driver_to_buffer.is_full_out = '0';
wait for CLK_PERIOD/2;
wait until rising_edge(clk);
wait until rising_edge(clk);
buffer_to_socbridge_driver.payload <= "00100000";
wait until socbridge_driver_to_buffer.is_full_out = '0';
wait for CLK_PERIOD/2;
wait until rising_edge(clk);
wait until rising_edge(clk); --- ??? Why all these rising_edge checks?
while not done loop
wait until (rising_edge(socbridge_driver_to_ext.control(1)) or falling_edge(socbridge_driver_to_ext.control(1))) and socbridge_driver_to_ip.ready = '1';
ip_to_socbridge_driver.data <= std_logic_vector(to_unsigned(count, 8));
count := count + 1;
end loop;
wait;
end process internal_stimulus;
end architecture tb ;

130
src/software/simple_test.c Normal file
View File

@ -0,0 +1,130 @@
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/types.h>
#define debug(format, ...) printf("DEBUG - " format "\n",##__VA_ARGS__)
volatile u_int32_t ganimede_read_data[1024] __attribute__ ((aligned (1024)));
volatile u_int32_t ganimede_write_data[1024] __attribute__ ((aligned (1024)));
const uint32_t size_bias = 10;
enum OpType{ WRITE_ONE_SHOT, WRITE_LOOP, READ_ONE_SHOT, READ_LOOP };
int ceil_log2(unsigned long long x)
{
static const unsigned long long t[6] = {
0xFFFFFFFF00000000ull,
0x00000000FFFF0000ull,
0x000000000000FF00ull,
0x00000000000000F0ull,
0x000000000000000Cull,
0x0000000000000002ull
};
int y = (((x & (x - 1)) == 0) ? 0 : 1);
int j = 32;
int i;
for (i = 0; i < 6; i++) {
int k = (((x & t[i]) == 0) ? 0 : j);
y += k;
x >>= k;
j >>= 1;
}
return y;
}
// Address will forcibly floored to be aligned to KB.
// byteSize must be smaller than
u_int32_t create_ganimede_instruction(u_int32_t address, enum OpType optype, u_int32_t byteSize){
u_int32_t addressPart = (address & 0xfffffc00);
u_int32_t optypePart = 0x00000000;
u_int32_t byteSizePart = 0;
byteSize = byteSize > 1 << 25? 1<<25 :byteSize;
byteSizePart = ceil_log2(byteSize) - size_bias;
byteSizePart = (byteSizePart & 0xf) << 6;
switch (optype) {
case WRITE_ONE_SHOT: optypePart |= 0b001000; break;
case WRITE_LOOP: optypePart |= 0b011000; break;
case READ_ONE_SHOT: optypePart |= 0b000000; break;
case READ_LOOP: optypePart |= 0b010000; break;
}
return addressPart | optypePart | byteSizePart;
}
char* show_optype(u_int32_t optype){
switch ((optype & 0b111000) >> 3) {
case 0b001: return "WRITE_ONE_SHOT"; break;
case 0b011: return "WRITE_LOOP"; break;
case 0b000: return "READ_ONE_SHOT"; break;
case 0b010: return "READ_LOOP"; break;
}
return "UNKNOWN";
}
void print_gan_inst(u_int32_t inst){
int size = ((inst & 0b1111000000) >> 6) + size_bias;
if (size >= 30){
debug( "command vector is | address: %#011x\n"
" | operation: %s\n"
" | size: %d MB\n"
, inst & 0xfffffc00, show_optype(inst), 1 << (size - 30));
} else if (size >= 20){
debug( "command vector is | address: %#011x\n"
" | operation: %s\n"
" | size: %d MB\n"
, inst & 0xfffffc00, show_optype(inst), 1 << (size - 20));
} else if(size >= 10){
debug( "command vector is | address: %#011x\n"
" | operation: %s\n"
" | size: %d KB\n"
, inst & 0xfffffc00, show_optype(inst), 1 << (size - 10));
} else {
debug( "command vector is | address: %#011x\n"
" | operation: %s\n"
" | size: %d B\n"
, inst & 0xfffffc00, show_optype(inst), 1 << size);
}
}
int main(){
volatile u_int32_t* data_ptr = (u_int32_t*) 0x10000000;
volatile u_int32_t* cfg_ptr = (u_int32_t*) 0x80000d00;
//for(int i = 0; i < 10; i++){
// ((int*) (0x80000000))[i] = 0x12345678 + i;
//}
printf("\n");
debug("Initializing socbridge and GANIMEDE");
debug("setting socbridge config");
// Setting omaxsz = 7 and orxqen = true
cfg_ptr[0] = 0x0001bfff;
cfg_ptr[1] = 0x00000000;
debug("setting parif config.");
cfg_ptr[4] = 0x00000071;
cfg_ptr[5] = 0x00001002;
debug("initializing test data to read");
for(int i = 0; i < sizeof(ganimede_read_data)/sizeof(u_int32_t); i++){
ganimede_read_data[i] = i;
}
debug("Finished initializing\n");
debug("Sending commands to GANIMEDE");
debug("creating and sending a read instruction");
int readInst = create_ganimede_instruction((u_int32_t) &ganimede_read_data[0], READ_ONE_SHOT, 1024 );
print_gan_inst(readInst);
//data_ptr[0] = readInst;
debug("creating and sending a write instruction");
int writeInst = create_ganimede_instruction((u_int32_t) &ganimede_write_data[0], WRITE_ONE_SHOT, 1024);
print_gan_inst(writeInst);
//data_ptr[1] = writeInst;
debug("Finished sending commands\n");
return 0;
}

View File

@ -2,16 +2,34 @@
standard = "1993"
# File names are either absolute or relative to the parent folder of the vhdl_ls.toml file
[libraries]
ganimede.files = [
'ganimede/io_type_pkg.vhd'
gan_ganimede.files = [
'ganimede/io_type_pkg.vhd',
'ganimede/ganimede.vhd'
]
socbridge.files = [
gan_socbridge.files = [
'socbridge/*.vhd'
]
controller.files = [
gan_dummy_ip.files = [
'dummy_ip/*.vhd'
]
gan_controller.files = [
'controller/*.vhd',
]
gan_manager.files = [
'manager/*.vhd',
]
gan_buffer.files = [
'fifo_buffer/*.vhd',
]
grlib.files = [
'grlib-com-nx-2024.4-b4295/lib/grlib/**/*.vhd',
]
techmap.files = [
'grlib-com-nx-2024.4-b4295/lib/techmap/**/*.vhd',
]
gaisler.files = [
'grlib-com-nx-2024.4-b4295/lib/gaisler/**/*.vhd',
]
[lint]
unused = 'error' # Upgrade the 'unused' diagnostic to the 'error' severity